Вимірювання та кореляція даних ізобаричної паро-рідинної рівноваги для системи вода + 2-азидо-n,n-диметилетанамін при 4 кпа

2021;
: сс. 226 - 232
1
Faculty of Chemistry & Chemical Engineering, Malek Ashtar University of Technology
2
Faculty of Chemistry & Chemical Engineering, Malek Ashtar University of Technology

Одержані дані ізобаричної паро-рідинної рівноваги (ПРР) для бінарної системи вода + 2-азидо-N,N-диметилетанамін при 4 кПа. Встановлено, що азеотропна точка знаходиться за x1 = 0,985 і T = 302,17 К. Проведено кореляцію даних з невипадковою дворідинною моделлю (NRTL), моделлю Уілсона та універсальною моделлю коефіцієнта квазіхімічної активності (UNIQUAC) для рідкої фази. Проведено порівняння характеристик моделі, використовуючи критерій середнього абсолютного відхилення, стандартного відхилення та середнього стандартного відхилення в точці кипіння. Показано, що модель NRTL задовільно корелює з даними ПРР.

  1. Schmidt E.: Hydrazine and Its Derivatives, 2nd edn. Wiley, New York 2001
  2. Agrawal J.: High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH, Weinheim 2010.
  3. Reddy G., Song J., Mecchi M., Johnson M.: Res.-Gen. Tox. En., 2010, 700, 26. https://doi.org/10.1016/j.mrgentox.2010.04.019
  4. Aronson J.: The Synthesis and Characterization of Energetic Materials from Sodium Azide, PhD Thesis, Georgia Institute of Technology 2004
  5. Chouireb N., Crespo E., Pereira L. et al.: J. Chem. Eng. Data, 2018, 63, 2394. https://doi.org/10.1021/acs.jced.7b00945
  6. Li G., Yin X.: J. Chem. Eng. Data, 2018, 63, 2009. https://doi.org/10.1021/acs.jced.8b00005
  7. Liu L., Zhong Y., Zhang R., Tan W.: J. Chem. Eng. Data, 2015, 60, 3268. https://doi.org/10.1021/acs.jced.5b00500
  8. Figueiredo B., Da Silva F., Silva C.: Ind. Eng. Chem. Res., 2013, 52, 16044. https://doi.org/10.1021/ie402575c
  9. Milzetti J., Nayar D., van der Vegt N.: J. Phys. Chem. B, 2018, 2018, 5515. https://doi.org/10.1021/acs.jpcb.7b11831
  10. Vranes M., Tot A., Papovic S. et al.: J. Chem. Thermodyn., 2015, 81, 66. https://doi.org/10.1016/j.jct.2014.10.002
  11. Torcal M., Langa E., Pardo J. et al. J. Chem. Thermodyn., 2016, 97, 88. https://doi.org/10.1016/j.jct.2016.01.008
  12. Wisniak J., Ortega J., Fernandez L.: J. Chem. Thermodyn., 2017, 107, 216. https://doi.org/10.1016/j.jct.2016.12.027
  13. Ma Y., Gao J., Li M. et al.: J. Chem. Thermodyn., 2018, 122, 154. https://doi.org/10.1021/je400531a
  14. Lemos C., Rade L., Gilfrida W. et al.: J. Chem. Thermodyn. 2018, 123, 46. https://doi.org/10.1016/j.jct.2018.03.023
  15. Kokan T., Olds J., Seitzman J., Ludovice P.: Acta Astronaut., 2009, 65, 967. https://doi.org/10.1016/j.actaastro.2009.01.064
  16. Smith J., Van Ness H.: Introduction to Chemical Engineering Thermodynamics, 4th edn. McGraw-Hill, New York 1987.
  17. Wisniak J., Ortega J., Fernandez L.: J. Chem. Thermodyn., 2017, 105, 385. https://doi.org/10.1016/j.jct.2016.10.038
  18. Poling B., Prausnitz J., O΄Connell J.: The Properties of Gases and Liquids, 5th edn. McGraw Hill, New York 2001
  19. Mali N., Yadav S., Ghuge P., Joshi S.: J. Chem. Eng. Data, 2017, 62, 4356. https://doi.org/10.1021/acs.jced.7b00704
  20. Yang J., Pan X., Yu M. et al.: J. Mol. Liq., 2018, 268, 19. https://doi.org/10.1016/j.molliq.2018.07.038
  21. Li M., Xu X., Li X. et al.: Sci. Rep., 2017, 7, 9497. https://doi.org/10.1038/s41598-017-09088-2
  22. Jia H., Wang H., Ma K. et al.: Chin. J. Chem. Eng., 2018, 26, 993. https://doi.org/10.1016/j.cjche.2017.11.003