Stressed and strained state of layered cylindrical shell under local convective heating

The stress-strain state of a layered composite cylindrical shell under local heating by the environment due to convective heat exchange has been studied.  The equation of the six-modal theory of thermoelasticity and the two-dimensional equation of thermal conductivity of inhomogeneous anisotropic shells are used for this purpose.  The solution of the nonstationary heat transfer problem and the quasi-static thermoelasticity problem for a finite hinged orthogonally reinforced shell of symmetric structure is found by the methods of integral Fourier and Laplace transforms.  Numerical results are given for the three-layer shell.

  1. Musij R., Zhydyk U., Drohomyretska K., Kushka B., Shynder V.  Modeling and Computer Analysis of Temperature of a Dental Crown Made of Isotropic Functionally Gradient Metal-Ceramics.  International Conference on Perspective Technologies and Methods in MEMS Design. 94–97 (2020).
  2. Musii R. S., Zhydyk U. V., Mokryk O. Ya., Melnyk N. B.  Functionally gradient isotropic cylindrical shell locally heated by heat sources.  Mathematical Modeling and Computing.  6 (2), 367–373 (2019).
  3. Reddy J. N.  Mechanics of laminated composite plates and shells. Theory and analysis.  New York, CRC Press (2004).
  4. Hetnarski R.  Encyclopedia of Thermal Stresses.  Springer (2014).
  5. Kushnir R. M., Nykolyshyn M. M., Zhydyk U. V., Flyachok V. M.  On the theory of inhomogeneous anisotropic shells with initial stresses.  Journal of Mathematical Sciences.  186, 61–72 (2012).
  6. Gembara N., Luchko J.  Modeling of thermal conductivity of shells with bilateral multilayer coating.  Bulletin of TNTU.  69 (1), 222–230 (2013).
  7. Tokovyy Y., Chyzh A., Ma C. C.  An analytical solution to the asymmetric thermoelasticity problem for a cylinder with arbitrarily varying thermomechanical properties.  Acta Mechanica.  230, 1469–1485 (2019).
  8. Wang H. M., Ding H. J.  Transient thermoelastic solution of a multilayered orthotropic hollow cylinder for axisymmetric problems.  Journal of Thermal Stresses.  27 (12), 1169–1185 (2004).
  9. Zhydyk U. V.  Laminated cross-ply cylindrical shell due to transient heating.  Applied Problems of Mechanics and Mathematics.  17, 113–120 (2019).
  10. Fazelzadeh S. A., Rahmani S., Ghavanloo E., Marzocca P.  Thermoelastic vibration of doubly-curved nano-composite shells reinforced of doubly-curved of doubly-curved nano-composite shells reinforced. Journal of Thermal Stresses.  42 (1), 1–17 (2019).
  11. Punera D., Kant T., Desai Y. M.  Thermoelastic analysis of laminated and functionally graded sandwich cylindrical shells with two refined higher order models.  Journal of Thermal Stresses.  41 (1), 54–79 (2018).
  12. Ootao Y., Tanigawa Y., Miyatake K.  Transient thermal stresses of cross-ply laminated cylindrical shell using a higher-order shear deformation theory.  Journal of Thermal Stresses.  33 (1), 55–74 (2010).
  13. Pandey S., Pradyumna S.  Transient stress analysis of sandwich plate and shell panels with functionally graded material core under thermal shock.  Journal of Thermal Stresses.  41 (5), 543–567 (2018).
  14. Brischetto S., Carrera E.  Coupled thermo-mechanical analysis of one-layered and multilayered isotropic and composite shells.  Computer Modeling in Engineering & Sciences.  56 (3), 249–301 (2010).
  15. Li Y., Yang L., Zhang L., Gao Y.  Exact thermoelectroelastic solution of layered one-dimensional quasicrystal cylindrical shells.  Journal of Thermal Stresses.  41 (10–12), 1450–1467 (2018).
  16. Matsunaga H.  Thermal buckling of cross-ply laminated composite shallow shells according to a global higher-order deformation theory.  Composite Structures.  81 (2), 210–221 (2007).
  17. Mirsky I.  Vibrations of orthotropic thick cylindrical shells.  The Journal of the Acoustical Society of America.  36 (1), 41–51 (1964).
  18. Shirakawa K., Ochiai Y.  Transient response of cylindrical shells to localized heat sources.  Nuclear Engineering and Design.  54 (3), 337–447 (1979).
Mathematical Modeling and Computing, Vol. 9, No. 1, pp. 143–151 (2022)