Preventing congestion in crowd dynamics caused by reversing flow

In this paper we devise a microscopic (agent-based) mathematical model for reproducing crowd behavior in a specific scenario: a number of pedestrians, consisting of numerous social groups, flow along a corridor until a gate located at the end of the corridor closes.  People are not informed about the closure of the gate and perceive the blockage observing dynamically the local crowd conditions.  Once people become aware of the new conditions, they stop and then decide either to stay, waiting for reopening, or to go back and leave the corridor forever.  People going back hit against newly incoming people creating a dangerous counter-flow.  We run several numerical simulations varying parameters which control the crowd behavior, in order to understand the factors which have the greatest impact on the system dynamics.  We also study the optimal way to inform people about the blockage in order to prevent the counter-flow.  We conclude with some useful suggestions directed to the organizers of mass events.

  1. Hirai K., Tarui K.  A simulation of the behavior of a crowd in panic.  Proceedings of the 1975 International Conference on Cybernetics and Society. 409–411 (1975).
  2. Okazaki S.  A study of pedestrian movement in architectural space, part 1: Pedestrian movement by the application of magnetic model.  Transactions of the Architectural Institute of Japan. 283, 111–119 (1979).
  3. Henderson L. F.  On the fluid mechanics of human crowd motion.  Transportation Research. 8 (6), 509–515 (1974).
  4. Aghamohammadi R., Laval J. A.  Dynamic traffic assignment using the macroscopic fundamental diagram: A Review of vehicular and pedestrian flow models.  Transportation Research Part B: Methodological. 137, 99–118 (2020).
  5. Bellomo N., Dogbe C.  On the modeling of traffic and crowds: A survey of models, speculations, and perspectives.  SIAM Review. 53 (3), 409–463 (2011).
  6. Bellomo N., Gibelli L., Quaini A., Reali A.  Towards a mathematical theory of behavioral human crowds.  Mathematical Models and Methods in Applied Sciences. 32 (02), 321–358 (2022).
  7. Chen X., Treiber M., Kanagaraj V., Li H.  Social force models for pedestrian traffic – state of the art.  Transport Reviews. 38 (5), 625–653 (2018).
  8. Dong H., Zhou M., Wang Q., Yang X., Wang F.-Y.  State-of-the-art pedestrian and evacuation dynamics.  IEEE Transactions on Intelligent Transportation Systems. 21 (5), 1849–1866 (2020).
  9. Duives D. C., Daamen W., Hoogendoorn S. P.  State-of-the-art crowd motion simulation models.  Transportation Research Part C: Emerging Technologies. 37, 193–209 (2013).
  10. Eftimie R.  Multi-dimensional transport equations.  In: Hyperbolic and Kinetic Models for Self-organised Biological Aggregations.  Lecture Notes in Mathematics. Vol. 2232, 153–193 (2018).
  11. Martinez-Gil F., Lozano M., García-Fernández I., Fernández F.  Modeling, evaluation, and scale on artificial pedestrians: A literature review.  ACM Computing Surveys. 50 (5), 72 (2017).
  12. Papadimitriou E., Yannis G., Golias J.  A critical assessment of pedestrian behaviour models.  Transportation Research Part F: Traffic Psychology and Behaviour. 12 (3), 242–255 (2009).
  13. Yang S., Li T., Gong X., Peng B., Hu J.  A review on crowd simulation and modeling.  Graphical Models. 111, 101081 (2020).
  14. Haghani M.  Empirical methods in pedestrian, crowd and evacuation dynamics: Part I. Experimental methods and emerging topics.  Safety Science. 129, 104743 (2020).
  15. Haghani M.  Empirical methods in pedestrian, crowd and evacuation dynamics: Part II. Field methods and controversial topics.  Safety Science. 129, 104760 (2020).
  16. Haghani M.  The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact.  Physica A: Statistical Mechanics and its Applications. 580, 126145 (2021).
  17. Cristiani E., Piccoli B., Tosin A.  Multiscale Modeling of Pedestrian Dynamics.  Series Modeling, Simulation & Applications. Springer (2014).
  18. Rosini M. D.  Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications. Springer (2013).
  19. Kachroo P. P. E., Wadoo S. A., Al-nasur S. J., Shende A.  Pedestrian Dynamics. Feedback Control of Crowd Evacuation, Understanding Complex Systems.  Springer-Verlag, Berlin Heidelberg (2008).
  20. Maury B., Faure S.  Crowds in Equations. An Introduction to the Microscopic Modeling of Crowds.  World Scientific (2019).
  21. Helbing D.  Traffic and related self-driven many-particle systems.  Reviews of Modern Physics. 73 (4), 1067–1141 (2001).
  22. Albi G., Cristiani E., Pareschi L., Peri D.  Mathematical models and methods for crowd dynamics control.  In: Gibelli L. (eds) Crowd Dynamics. Vol. 2.  Modeling and Simulation in Science, Engineering and Technology. 159–197 (2020).
  23. Cristiani E., De Santo A., Menci M.  A generalized mean-field game model for the dynamics of pedestrians with limited predictive abilities.  Preprint  arXiv:2108.00086 (2021).
  24. Helbing D., Mukerji P.  Crowd disasters as systemic failures: Analysis of the Love Parade disaster.  EPJ Data Science. 1, 7 (2012).
  25. Helbing D., Molnár P.  Social force model for pedestrian dynamics.  Physical Review E. 51 (5), 4282–4286 (1995).
  26. Hoogendoorn S., Bovy P. H. L.  Simulation of pedestrian flows by optimal control and differential games.  Optimal Control Applications and Methods. 24, 153–172 (2003).
  27. Heliövaara S., Korhonen T., Hostikka S., Ehtamo H.  Counterflow model for agent-based simulation of crowd dynamics.  Building and Environment. 48, 89–100 (2012).
  28. Cristiani E., Piccoli B., Tosin A.  Multiscale modeling of granular flows with application to crowd dynamics.  Multiscale Modeling & Simulation. 9 (1), 155–182 (2011).
  29. Weng W. G., Chen T., Yuan H. Y., Fan W. C.  Cellular automaton simulation of pedestrian counter flow with different walk velocities.  Physical Review E. 74 (3), 036102 (2006).
  30. Nowak S., Schadschneider A.  Quantitative analysis of pedestrian counterflow in a cellular automaton model.  Physical Review E. 85 (6), 066128 (2012).
  31. Kretz T., Grünebohm A., Kaufman M., Mazur F., Schreckenberg M.  Experimental study of pedestrian counterflow in a corridor.  Journal of Statistical Mechanics: Theory and Experiment. P10001 (2006).
  32. Hoogendoorn S. P., Daamen W., Bovy P. H. L.  Extracting microscopic pedestrian characteristics from video data: Results from experimental research into pedestrian walking behavior.  Transportation Research Board, 82nd Annual Meeting (2003).
  33. Helbing D., Molnár P., Farkas I. J., Bolay K.  Self-organizing pedestrian movement.  Environment and Planning B: Planning and Design. 28, 361–383 (2001).
  34. Murakami H., Feliciani C., Nishiyama Y., Nishinari K.  Mutual anticipation can contribute to self-organization in human crowds.  Science Advances. 7 (12), eabe7758 (2021).
  35. Aveni A. F.  The not-so-lonely crowd: Friendship groups in collective behavior.  Sociometry. 40, 96–99 (1977).
  36. Moussaïd M., Perozo N., Garnier S., Helbing D., Theraulaz G.  The walking behaviour of pedestrian social groups and its impact on crowd dynamics.  PloS One. 5, e10047 (2010).
  37. Von Krüchten C., Schadschneider A.  Empirical study on social groups in pedestrian evacuation dynamics.  Physica A: Statistical Mechanics and its Applications. 475, 129–141 (2017).
  38. Singh H., Arter R., Dodd L., Langston P., Lester E., Drury J.  Modelling subgroup behaviour in crowd dynamics DEM simulation.  Applied Mathematical Modelling. 33, 4408–4423 (2009).
  39. Zanlungo F., Crociani L., Yücel Z., Kanda T.  The effect of social groups on the dynamics of bi-directional pedestrian flow: A numerical study.  In: Zuriguel I., Garcimartin A., Cruz R. (eds) Traffic and Granular Flow 2019. 307–313 (2020).
  40. Crociani L., Gorrini A., Feliciani C., Vizzari G., Nishinari K., Bandini S.  Micro and macro pedestrian dynamics in counterflow: The impact of social group.  In: Hamdar S. (eds) Traffic and Granular Flow 2017, 151–158 (2019).
  41. Scozzari R., Fronterrè M., Amaro G. G.  Modeling crowd movement in large scale events, the case of Storico Carnevale di Ivrea.  In: Proceedings of Fire and Evacuation Modeling Technical Conference (FEMTC) 2018.  (2018).