Buck converter with magnetic-coupled inductors for power factor corrector

The step-down dc-to-dc converter for application in power factor corrector is proposed and analysed in this paper. Unlike a conventional buck converter containing a single inductor and output capacitor, the proposed converter uses two magnetic-coupled inductors and two output capacitors connected in series. The output voltage of such a coupled inductor buck converter is equal to the sum of voltages of these capacitors. The direct interaction of the input voltage occurs only with a part of the output voltage. This allows increasing a conduction angle in the power factor corrector (PFC) on the basis of the proposed converter and, as a result, reducing the total harmonic distortions and increasing a power factor to satisfy current standard requirements. A detailed analysis of the operation of the proposed converter is presented. The reliability of the analysis is confirmed by a small discrepancy between the results of calculation, modeling and experiment.

  1. L. Huber, Y. Jang, and M.M. Jovanović, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381–1390, May 2008.
  2. W.Y. Choi, J.M. Kwon, E.H. Kim, J.J. Lee, and B.H. Kwon, “Bridgeless boost rectifier with low conduction losses and reduced diode reverse-recovery problems,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 769–780, Apr. 2007.
  3. Y. Jang and M.M. Jovanović, “A bridgeless PFC boost rectifier with optimized magnetic utilization,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 85–93, Jan. 2009.
  4. J.R. Ortiz-Castrillón, J.E. Mejía-Ruíz, N.  Muñoz-Galeano, M. López-Lezama, and S.D. Saldarriaga-Zuluaga, “PFC Single-Phase AC/DC Boost Converters: Bridge, Semi-Bridgeless, and Bridgeless Topologies,” Appl. Sci,vol. 11(16), Aug. 2021.
  5. L. Huber, L. Jang, and M. Jovanovich, “Design-Oriented Analysis and Perfomance Evaluation of Buck PFC Front End,” IEEE Trans. Power Electron., vol. 25, no 1, pp.85-94, Jan. 2010.
  6. G. Spiazzi “Analysis of buck converters used as power factor preregulators,” / PESC '97 Record., 28th Annual IEEE', vol.1. pp. 564-570.
  7. G. Spiazzi “Analysis of buck converters used as power factor preregulators,” / PESC '97 Record., 28th Annual IEEE', vol.1. pp. 564-570.
  8. B. Keogh. “Power Factor Correction Using the Buck Topology – Efficiency Benefits and Practical Design Considerations”, Texas Instruments Power Supply Design Seminar SEM 1900, Topic 4,  SLUP264, 2010, [Online].  Available:  https://www.ti.com/seclit/ml/slup264/slup264.pdf.
  9.  J. M. Alonso, A.J. Calleja, J. Ribas, and M. Rico-Secades,Evaluation of a Novel Single-Stage High-Power-Factor Electronic Ballast Based on Integrated Buck Half-Bridge Resonant Inverter,” Conf. Rec. IEEE APEC’2000, vol. 1, pp. 610–616, Feb. 2000.
  10. J. M. Alonso, A. J. Calleja, J. Ribas, E. Lopez, M. Rico-Secades and  J. Sebastian, “Using Input-Current-Shaper Based Electronic Ballast,” Conf. Rec. IEEE APEC’99, pp. 746–752, Mar.1999.
  11. X. Xie, C. Zhao, L. Zheng, S. Liu, “An improved buck PFC converter with high power factor,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2277–2284, May 2013.
  12. X. Xie, C. Zhao, Q. Lu, S. Liu, “A novel integrated buck-flyback nonisolated PFC converter with high power factor,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5603–5612, Dec. 2013. 
  13.  M. Turhan, J.C. Castellanos, M.A. M. Hendrix, J. L. Duarte and E. A. Lomonova, “Multiple-Output DC-DC Converters with a Reduced Number of Active and Passive Components,”  J. Low Power Electron. Appl.,vol. 9, 2019.