Study on microstructure characterization of fracture frontier of post welds heat treatment and type IV cracking of P92 steel welded joint

https://doi.org/10.23939/ujmems2022.02.001
Надіслано: Квітень 28, 2022
Переглянуто: Травень 26, 2022
Прийнято: Травень 30, 2022
1
Department of Mechanical Engineering, Sam Higginbottom University of Agriculture, TechnologyAnd Sciences Allahabad, 211007, U.P, India
2
Department of Mechanical Engineering, Sam Higginbottom University of Agriculture, TechnologyAnd Sciences Allahabad, 211007, U.P, India

In the research work presented in this study microstructure evolution at fracture frontier of crept P92 weld, creep rupture life and effect of creep exposure time on microstructure evolution in fine-grained heat affected zone were performed. Microstructure evolution and creep rupture behavior of metal arc welded joint of P92 steel plate in the as-welded have been studied. The different states of post weld heat treatment (PWHT). (i). post welded heat treatment at 760 C for the 2h (ii). re-austenitizing at 1040 C for 60 min and air cooled and tempering at 760 C for 2h. In PWHT condition, most common type IV cracking was observed creep exposure 620 oC / 150 MPa. The martensitic matrix fracture is also observed in PWNT 1 condition. A move away from the fracture frontier, the cavities still remain in the microstructure while the martensitic matrix fracture is difficult to observe. The line mapping also confirmed the increase in weight percentage of Cr and Mo in M23C6. The elemental mapping of PWHT 2 condition is also carried out in FGHAZ which confirm the formation of Mo and Cr-rich M23C6 precipitates.

[1]  R.B.  Brucker,  W.M.  Elger,  M.J.  Sorek,  M.S.  Group,  M.  Engineer,  R.B.  Brucker,  W.M.  Elger, Microstructure-thermal history correlations for HY-130 thick section weldments, Weld. J. 63 (1984) 254–62. 
[2]K. Laha, K.S. Chandravathi,  P. Parameswaran, K.B.S.  Rao, S.L. Mannan, Characterization of microstructures across the heat-affected zone of the modified 9Cr-1Mo weld joint to understand its role in promoting type IV cracking, Metall. Mater. Trans. A. 38 (2007) 58–68. https://doi.org/10.1007/s11661-006-9050-0. 
[3]Y. Tsuchida, K. Okamoto, Y. Tokunaga, Study of creep rupture strength in heat affected zone of 9Cr-1Mo-V-Nb-N steel by welding thermal cycle simulation, Weld. Int. 10 (1996) 454–460.  https://doi.org/10.1080/09507119609549030. 
[4]D.J. Abson, J.S. Rothwell, Review of type IV cracking of weldments in 9–12% Cr  creep  strength nhanced ferritic steels, Int. Mater. Rev. 58 (2013) 437–473. https://doi.org/10.1179/1743280412Y.0000000016. 
[5]M. E. A. El-azim, A.M. Nasreldin, G. Zies, A. Klenk, Microstructural instability of a welded joint in P91 steel during creep at 600 u C, Mater. Sci. Technol. 21 (2005) 779–791. https://doi.org/10.1179/174328405X43216. 
[6] S.K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, M. Tabuchi, Microstructural investigations on type IV cracking in a high Cr steel, ISIJ Int. 42 (2002) 1497–1504. 
[7] T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, T. Tanabe, Creep damage evaluation of 9Cr-1Mo-V-Nb  steel  welded  joints  showing  Type  IV  fracture,  Int.  J.  Press.  Vessel.  Pip.  83  (2006)  63–71.  https://doi.org/10.1016/j.jelectrocard.2005.07.009. 
[8]S.K. Albert, M. Tabuchi, H. Hongo, T. Watanabe, K. Kubo, M. Matsui, Effect of welding process and groove angle on type IV cracking behaviour of weld joints of a ferritic steel, Sci. Technol. Weld. Join. 10 (2005) 149–157. https://doi.org/10.1179/174329305X36034. 
[9]F. Abe, M. Tabuchi, F. Abe, M. Tabuchi, Microstructure and creep strength of welds in advanced ferritic power plant steels, Sci. Technol. Weld. Join. 9 (2004) 22–30. https://doi.org/10.1179/136217104225017107. 
[10]J.A. Francis, W. Mazur, H.K.D.H. Bhadeshia, Estimation of Type IV Cracking Tendency in Power Plant Steels, ISIJ Int. 44 (2004) 1966–1968. 
[11] K. Shinozaki, D. Li, H. Kuroki, H. Harada, K. Ohishi, T. Sato, Observation of type IV cracking in welded joints  of  high  chromium  ferritic  heat  resistant  steels,  Sci.  Technol.  Weld.  Join.  8  (2003)  289–295. https://doi.org/10.1179/136217103225005444. 
[12]  M.E.  Abd  El-Azim,  O.E.  El-Desoky,  H.  Ruoff,  F.  Kauffmann,  E.  Roos,  Creep  fracture  mechanism  in welded  joints  of  P91  steel,  Mater.  Sci.  Technol.  29  (2013)  1027–1033. 
https://doi.org/10.1179/1743284713Y.0000000233. 
[13]S.K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, M. Tabuchi, Variation in the type IV cracking behaviour  of  a  high  Cr  steel  weld  with  post  weld  heat  treatment,  Int.  J.  Press.  Vessel.  Pip.  80  (2003)  405–413. https://doi.org/10.1016/S0308-0161(03)00072-3. 
[14]K. Sawada, M. Bauer, F. Kauffmann, P. Mayr, A. Klenk, Microstructural change of 9% Cr-welded joints after long-term creep, Mater. Sci. Eng. A. 527 (2010) 1417–1426. https://doi.org/10.1016/j.msea.2009.10.044. 
[15]  T.  Sato,  K.  Tamura,  K.  Mitsuhata,  R.  Ikura,  Improvement  of  creep  rupture  strength  of  9Cr1MoNbV welded joints by post weld normalizing and tempering, in: 5th Int. Conf. Adv. Mater. Technol., 2008: pp. 1–10. 
[16] M. Dewitte, C. Coussement, Creep properties of 12% Cr and improved 9% Cr weldments, Mater. High Temp. 9 (1991) 178–184. https://doi.org/10.1080/09603409.1991.11689658. 
[17]J. A.  Francis,  G.M.D.  Cantin,  W.  Mazur,  H.K.D.H.  Bhadeshia,  G.M.D.  Cantin,  W.  Mazur,  H.K.D.H. Bhadeshia, J.A. Francis, G.M.D. Cantin, W. Mazur, H.K.D.H. Bhadeshia, Effects of weld preheat temperature and heat  input  on  type  IV  failure,  Sci.  Technol.  Weld.  Join.  14  (2009)  436–442. https://doi.org/10.1179/136217109X415884. 
[18] M. Kondo, M. Tabuchi, S. Tsukamoto, F. Yin, F. Abe, M. Kondo, M. Tabuchi, S. Tsukamoto, F. Yin, F. Abe, Suppressing type IV failure via modification of heat affected zone microstructures using high boron content in 9Cr  heat  resistant  steel  welded  joints,  Sci.  Technol.  Weld.  Join.  ISSN.  11  (2006)  216–223. https://doi.org/10.1179/174329306X89260. 
[19]  V.L.  Manugula,  K.  V.  Rajulapati,  G.M.  Reddy,  K.B.S.  Rao,  Role  of  evolving  microstructure  on  the mechanical properties of electron beam welded ferritic-martensitic steel in the as-welded and post weld heat-treated states, Mater. Sci. Eng. A. 698 (2017) 36–45. https://doi.org/10.1016/j.msea.2017.05.036. 
[20] William F. Newell JR., Welding and postweld heat treatment of P91 steels, Weld. J. 89 (2010) 33–36. 
[21] M. Yamazaki, T. Watanabe, H. Hongo, M. Tabuchi, Creep rupture properties of welded joints of heat resistant steels, Challenges Power Eng. Environ. (2007) 1044–1048. https://doi.org/10.1299/jpes.2.1140. 
[22]  O.D.  Sherby,  E.M.  Taleff,  Influence  of  grain  size,  solute  atoms  and  second-phase  particles  on  creep behavior  of  polycrystalline  solids,  Mater.  Sci.  Eng.  A.  322  (2002)  89–99.  https://doi.org/10.1016/S0921-5093(01)01121-2. 
[23] V. Dudko, A. Belyakov, D. Molodov, R. Kaibyshev, Microstructure evolution and pinning of boundaries by precipitates in a 9 pct Cr heat resistant steel during creep, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013). https://doi.org/10.1007/s11661-011-0899-1. 
[24] F. Abe, Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels, Mater. Sci. Eng. A. 319–321 (2001) 770–773. https://doi.org/10.1016/S0921-5093(00)02002-5. 
[25]  T.  Sakthivel,  S.P.  Selvi,  K.  Laha,  An  assessment  of  creep  deformation  and  rupture  behaviour  of  9Cr-1.8W-0.5Mo-VNb  (ASME  grade  92)  steel,  Mater.  Sci.  Eng.  A.  640  (2015)  61–71. 
https://doi.org/10.1016/j.msea.2015.05.068. 
[26] J. Zhang, H. Di, Y. Deng, R.D.K. Misra, Effect of martensite morphology and volume fraction on strain hardening  and  fracture  behavior  of  martensite-ferrite  dual  phase  steel,  Mater.  Sci.  Eng.  A.  627  (2015)  230–240. https://doi.org/10.1016/j.msea.2015.01.006. 
[27]  M.I.  Isik,  A.  Kostka,  G.  Eggeler,  On  the  nucleation  of  Laves  phase  particles  during  high-temperature exposure  and  creep  of  tempered  martensite  ferritic  steels,  Acta  Mater.  81  (2014)  230–240. https://doi.org/10.1016/j.actamat.2014.08.008. 
[28] W. Liu, X. Liu, F. Lu, X. Tang, H. Cui, Y. Gao, Creep behavior and microstructure evaluation of welded joint  in  dissimilar  modified  9Cr-1Mo  steels,  Mater.  Sci.  Eng.  A.  644  (2015)  337–346. https://doi.org/10.1016/j.msea.2015.07.068. 
[29] K. Shinozaki, D.-J. Li, H. Kuroki, H. Harada, K. Ohishi, Analysis of Degradation of Creep Strength in Heat-affected Zone of Weldment of High Cr Heat-resisting Steels Based on Void Observation., ISIJ Int. 42 (2002) 1578–1584. https://doi.org/10.2355/isijinternational.42.1578. 
[30] K. Miyahara, J.H. Hwang, Y. Shimoide, Aging phenomena before the precipitation of the bulky laves phase  in  Fe-10%Cr  ferritic  alloys,  Scr.  Metall.  Mater.  32  (1995)  1917–1921.  https://doi.org/10.1016/0956-716X(95)00086-B. 
[31] X. Z. Zhang, X. J. Wu, R. Liu, J. Liu, M. X. Yao, Influence of Laves phase on creep strength of modified 9Cr-1Mo steel, Mater. Sci. Eng. A. 706 (2017) 279–286. https://doi.org/10.1016/j.msea.2017.08.111.