Effects of rodents' behaviours on leptospirosis spread: an individual-based modeling approach

Leptospirosis is a zoonotic disease common in tropical and subtropical regions.  This infectious disease is endemic in Sarawak, Malaysia.  In recent years, the threat of leptospirosis is on an increasing trend in Sarawak since 2010.  The traditional compartmental models assume that the population is homogeneous and shares the same characteristics and behaviours.  However, each individual in the population has different and unique behaviour in the real world.  Thus, this paper aims to model the leptospirosis spread by adopting the individual-based modeling approach to address the heterogeneity that affects the transmission of the disease.  Rodents' behaviours such as active period duration and movement range are incorporated into the model.  From the sensitivity analyses, the results show that the movement range of the rodents has a significant impact on the spread of the disease compared to the active period duration.  The comparison between simulation results and the actual prevalence data in Sarawak is performed to validate the model.  Through regression analysis, the correlations of determination for three outbreaks in Sarawak for the year 2017 are more than 90%.  In addition, the normal probability plots for three outbreaks indicate the points follow the line well and are normally distributed.  This shows that the proposed individual-based model can predict leptospirosis transmission.

  1. Costa F., Hagan J. E., Calcagno J., Kane M., Torgerson P., Martinez-Silveira M. S., Stein C., Abela-Ridder B.,  Ko A. I.  Global Morbidity and Mortality of Leptospirosis: A Systematic Review.  PLOS Neglected Tropical Diseases.  9 (9), e0003898 (2015).
  2. Tique V., Mattar S., Miranda J., Oviedo M., Noda A., Montes E., Rodriguez V.  Clinical and Epidemiological Status of Leptospirosis in a Tropical Caribbean Area of Colombia.  BioMed Research International.  2018, 6473851 (2018).
  3. World Health Organisation.  Human Leptospirosis: Guidance for Diagnosis, Surveillance and Control (2003).
  4. Phillips J. A.  Leptospirosis.  Workplace Health & Safety.  67 (3), 148 (2019).
  5. Biscornet L., de Comarmond J., Bibi J., Mavingui P., Dellagi K., Tortosa P., Pages F.  An Observational Study of Human Leptospirosis in Seychelles.  The American Journal of Tropical Medicine and Hygiene.  103 (3), 999–1008 (2020).
  6. Ghasemian A., Abbas A. F., Al-Saadi A. G. M., Salari M., Memariani H.,  Mostafavi S. K. S.  Occupational leptospirosis as an underreported disease in high-risk groups: implications for prevention and control measures.  Reviews in Medical Microbiology.  31 (2), 75–78 (2020).
  7. Thayaparan S., Robertson I. D., Fairuz A., Suut L., Abdullah M. T.  Leptospirosis, an emerging zoonotic disease in Malaysia.  Malaysian Journal of Pathology.  35 (2), 123–132 (2013).
  8. Malaysia Ministry of Health.  Bilangan Kes Penyakit Leptospirosis Mingguan Mengikut Negeri [The Number of Leptospirosis Weekly Cases for each States] (2018).
  9. Benacer D., Thong K. L., Verasahib K. B., Galloway R. L., Hartskeerl R. A., Lewis J. W., Zain S. N. M.  Human Leptospirosis in Malaysia: Reviewing the Challenges After 8 Decades (1925–2012).  Asia Pacific Journal of Public Health.  28 (4), 290–302 (2016).
  10. Boon P.  Health director: Leptospirosis cases on an upward trend.  Borneo Post (2018).
  11. Kermack W., McKendrick A.  A contribution to the mathematical theory of epidemics.  Proceedings of the Royal Society of London. Series A.  115 (772), 700–721 (1927).
  12. Esteva L., Vargas C.  Influence of vertical and mechanical transmission on the dynamics of dengue disease.  Mathematical Biosciences.  167 (1), 51–64 (2000).
  13. Ngwa G. A., Shu W. S.  A mathematical model for endemic malaria with variable human and mosquito populations.  Mathematical and Computer Modelling.  32 (7–8), 747–763 (2000).
  14. Chadsuthi S., Chalvet-Monfray K., Wiratsudakul A., Modchang C.  The effects of flooding and weather conditions on leptospirosis transmission in Thailand.  Scientific Reports.  11, 1486 (2021).
  15. Chong J. W., Tiong W. K., Labadin J., Sahak N.  Mathematical Modelling of Leptospirosis Spread in Malaysia.  Mathematical Modeling and Computing.  9 (1), 18–25 (2022).
  16. Black A. J., McKane A. J.  Stochastic formulation of ecological models and their applications.  Trends in Ecology & Evolution.  27 (6), 337–345 (2012).
  17. Kilpatrick A. M., Daszak P., Jones M. J., Marra P. P., Kramer L. D.  Host heterogeneity dominates West Nile virus transmission.  Proceedings of the Royal Society B: Biological Sciences.  273 (1599), 2327–2333 (2006).
  18. Nepomuceno E. G., Resende D. F., Lacerda M. J.  A Survey of the Individual-Based Model applied in Biomedical and Epidemiology Research.  Journal of Biomedical Research and Review.  1 (1), 11–24 (2018).
  19. Jindal A., Rao S.  Agent-Based Modelling and Simulation of Mosquito-Borne Disease Transmission.  Proceeding of the 16th International Conference on Autonomous Agents and Multiagent System (AAMAS 2017). 426–435 (2017).
  20. Mahmood I., Jahan M., Groen D., Javed A., Shafait F.  An Agent-Based Simulation of the Spread of Dengue Fever.  In: V. V. Krzhizhanovskaya, G. Zavodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, J. Teixeira (Eds), Computational Science – ICCS 2020 (pp. 103–117).  Springer (2020).
  21. Alvarez Castro D., Ford A.  3D Agent-Based Model of Pedestrian Movements for Simulating COVID-19 Transmission in University Students.  ISPRS International Journal of Geo-Information.  10 (8), 509 (2021).
  22. Wilensky U.  NetLogo (Version 6.2.0) [Computer Software]  Center for Connected Learning and Computer-Based Modeling, Northwestern University (1999).
  23. Abar S., Theodoropoulos G. K., Lemarinier P., O'Hare G. M. P.  Agent Based Modelling and Simulation tools: A review of the state-of-art software.  Computer Science Review.  24, 13–33 (2017).
  24. Lorscheid I., Heine B.-O.,  Meyer M.  Opening the `black box' of simulations: increased transparency and effective communication through the systematic design of experiments.  Computational and Mathematical Organization Theory.  18, 22–62 (2012).
  25. Garba B., Bahaman A. R., Khairani-Bejo S., Zakaria Z., Mutalib A. R.  Retrospective Study of Leptospirosis in Malaysia.  EcoHealth.  14, 389–398 (2017).
  26. Department of Statistics Malaysia.  Sarawak @ a Glance (2021).
  27. Department of Statistics Malaysia.  Press Release Abridged Life Tables, Malaysia, 2017–2019 (2019).
  28. Bhalraj A., Azmi A.  Mathematical modelling of the spread of Leptospirosis.  AIP Conference Proceedings.  2184 (1), 060031 (2019).
  29. Izurieta R., Galwankar S.,  Clem A.  Leptospirosis: The "mysterious" mimic.  Journal of Emergencies, Trauma, and Shock.  1 (1), 21–33 (2008).
  30. Leptospirosis Information Center.  Overview of human leptospirosis – guide for the public.
  31. Frohlich J.  Rats and Mice.  In: K. E. Quesenberry, C. J. Orcutt, C. Mans & J. W. Carpenter (Eds.).  Ferrets, Rabbits, and Rodents: Clinical Medicine and Surgery (4th ed., pp. 345–367).  Elsevier (2020).
  32. Tanaka R., Kawashima F.  Movement and Population of the Brown Rat in Kochi City.  Annotationes Zoologicae Japonenses. 24, 225–233 (1951).
  33. Lau C. L., Smythe L. D., Craig S. B., Weinstein P.  Climate change, flooding, urbanisation and leptospirosis: fuelling the fire?  Transactions of the Royal Society of Tropical Medicine and Hygiene.  104 (10), 631–638 (2010).
  34. Alia S. N., Joseph N., Philip N., Azhari N. N., Garba B., Masri S. N., Sekawi Z., Neela V. K.  Diagnostic accuracy of rapid diagnostic tests for the early detection of leptospirosis.  Journal of Infection and Public Healt.  12 (2), 263–269 (2018).