Chemical reaction and viscous dissipation effect on MHD oscillatory blood flow in tapered asymmetric channel

MHD viscous oscillating type blood flow through lumen in arteries and varicose veins motivating to the study of blood flow in disordered blood vessels and veins.  The blood flow in disordered nervous system, like varicose veins and other micro arteries in respiratory system is modeled geometrically in the shape of tapered curvy walls of varying cross section which is the new approach in this problem and the same has advantage compared to the other geometrical channel shapes.  Blood taken as viscoelastic and optically thick fluid flowing through porous structure.  Magnetic force considered in normal direction to the nervous system.  Viscous dissipation and chemical reaction effects on blood flow are analyzed.

  1. Ramachandra Rao A., Deshikacharan K. S.  MHD oscillatory flow of blood through channels of variable cross section.  International Journal of Engineering Sciences.  24 (10), 1615–1628 (1986).
  2. Ogulu A., Abbey T. M.  Simulation of heat transfer on an oscillatory blood flow in an indented porous artery.  International Communications in Heat and Mass Transfer.  32 (7), 983–989 (2005).
  3. Mustapha N., Amina N., Chakravarty S., Kumar Mandal P.  Unsteady magnetohydrodynamic blood flow through irregular multi-stenosed arteries.  Computers in Biology and Medicine.  39 (10), 896–906 (2009).
  4. Hatami M., Hatami J., Ganji D. D.  Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nano fluid in a hollow porous vessel.  Computer Methods and Programs in Biomedicine.  113 (2), 632–641 (2014).
  5. Shit G. C., Majee S.  Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment.  Journal of Magnetism and Magnetic Materials.  388, 106–115 (2015).
  6. Misra J. C., Adhikary S. D.  MHD oscillatory channel flow, heat and mass transfer in a physiological fluid in presence of chemical reaction.  Alexandria Engineering Journal.  55 (1), 287–297 (2016).
  7. Bhatti M. M., Ali Abbas M.  Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous Medium.  Alexandria Engineering Journal.  55 (2), 1017–1023 (2016).
  8. Akbarzadeh P.  Pulsatile magneto-hydrodynamic blood flowsthrough porous blood vessels using a third gradenon-Newtonian fluids model.  Computer Methods and Programs in Biomedicine.  126, 3–19 (2016).
  9. Sinha A., Misra J. C., Shit G. C.  Effect of heat transfer on unsteady MHD flow of blood in a permeable vessel in the presence of non-uniform heat source.  Alexandria Engineering Journal.  55 (3), 2023–2033 (2016).
  10. Mirza I. A., Abdulhameed M., Vieru D., Shafi S.  Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel.  Computer Methods and Programs in Biomedicine.  137, 149–166 (2016).
  11. Hsiao K.-L.  Micropolarnanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature.  International Journal of Heat and Mass Transfer.  112, 983–990 (2017).
  12. Majee S., Shit G. C.  Numerical investigation of MHD flow of blood and heat transfer in a stenosed arterial.  Journal of Magnetism and Magnetic Materials.  424, 137–147 (2017).
  13. Ali D., Sen S.  Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: Computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models.  Computers in Biology and Medicine.  99, 201–208 (2018).
  14. Kafle J., Gaire H. P., Pokhrel P. R., Kattel P.  Analysis of blood flow through curved artery with mild stenosis.  Mathematical Modeling and Computing.  9 (2), 217–225 (2022).
  15. Sasikumar J., Gayathri R., Govindarajan A.  Heat and Mass Transfer Effects on MHD Oscillatory flow of a Couple Stress fluid in an Asymmetric Tapered channel.  IOP Conference Series: Materials Science and Engineering.  402 (1), 012167 (2018).
  16. Vijayalakshmi T., Senthamarai R.  Study of two species prey–predator model in imprecise environment with harvesting scenario.  Mathematical Modeling and Computing.  9 (2), 385–398 (2022).
  17. Suganya G., Senthamarai R.  Mathematical modeling and analysis of Phytoplankton–Zooplankton–Nanoparticle dynamics.  Mathematical Modeling and Computing.  9 (2), 333–341 (2022).
  18. Kothandapani M., Srinivas S.  Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel.  International Journal of Non-Linear Mechanics.  43 (9), 915–924 (2008).
  19. Predikis C., Raptis A.  Heat transfer of a micropolar fluid by the presence of radiation.  Heat Mass Transfer.  31, 381–382 (1996).
  20. Venkateshwaralu B., Satya Narayana P. V., Devika B.  Effects of chemical reaction and heat source on MHD oscillatory flow of a viscoelastic fluid in a vertical porous channel.  International Journal of Applied and Computational Mathematics.  3 (1), 937–952 (2017).
Mathematical Modeling and Computing, Vol. 9, No. 4, pp. 999–1010 (2022)