PREPARATION OF ANTISEPTIC HYDROGEL PLATES BASED ON NATURAL POLYSACCHARIDES

Using natural polysaccharides, pectin and sodium alginate, hydrogel plates capable of absorbing exudate were obtained. Studies have shown no cytotoxicity of the plate material. In order to create bactericidal therapeutic dressings based on them, the possibility of filling the plates with antiseptics (iodine, betadine, chlorhexidine) was shown and their release dynamics was studied. Studies have shown that the release of iodine from the plate is too fast and can not meet the condition of its prolonged release in contrast to betadine and chlorhexidine.

  1. Tavakoli, S., Klar, A. S. (2020). Advanced Hydrogels as Wound Dressings. Biomolecules, 10(8), 1169. DOI: https://doi.org/10.3390/biom10081169
  2. Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O. (2019). Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials, 12, 3323-3356. DOI: https://doi.org/10.3390/ma12203323
  3. Catoira, M., Fusaro, L., Di Francesco, D., Ramella, M. (2019). Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science Materials in Medicine, 30, 105-115. DOI: https://doi.org/10.1007/s10856-019-6318-7
  4. Samchenko, Y., Korotych, O., Kernosenko, L., Poltoratska, T., Pasmurtseva, N. (2018). Stimuli-responsive hybrid porous polymers based on acetals of polyvinyl alcohol and acrylic hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 544, 91-104. DOI: https://doi.org/10.1016/j.colsurfa.2018.02.015
  5. Barbetta, A., Barigelli, E., Dentini, M. (2009). Porous Alginate Hydrogels: Synthetic Methods for Tailoring the Porous Texture. Biomacromolecules, 10, 2328-2337. DOI: https://doi.org/10.1021/bm900517q
  6. Rezvanian, M., Ahmad, N., Mohd Amin, M. C. I., Ng, S. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131-140. DOI: https://doi.org/10.1016/j.ijbiomac.2016.12.079
  7. Tummalapalli, M., Berthet, M., Verrier, B., Deopura, B. L., Alam, M. S., Gupta, B. (2016). Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. International Journal of Biological Macromolecules, 82, 104-113. DOI: https://doi.org/10.1016/j.ijbiomac.2015.10.087
  8. Weller, C. D., Team, V., Sussman, G. (2020). First-Line Interactive Wound Dressing Update: A Com- prehensive Review of the Evidence. Frontiers in phar- macology, 11, 155-179. DOI: https://doi.org/10.3389/fphar.2020.00155
  9. Lucília P. da Silva, Rui L. Reis, Vitor M. Correlo, Alexandra P. Marques. (2019). Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annual Review of Biomedical Engineering, 21, 145-169. DOI: https://doi.org/10.1146/annurev-bioeng-060418-052422
  10. Ehterami, A., Salehi, M., Farzamfar, S., Samadian, H., Vaez, A., Sahrapeyma, H., Ghorbani, S. (2020). A promising wound dressing based on alginate hydrogels containing vitamin D3 cross-linked by calcium carbonate/d-glucono-δ-lactone, Biomedical Engineering Letters, 10, 309-319. DOI: https://doi.org/10.1007/s13534-020-00155-8
  11. Stoica, A. E., Chircov, C., Grumezescu, A. M. (2020). Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. Materials, 13, 2853- 2877. DOI: https://doi.org/10.3390/ma13122853
  12. Narayanaswamy, R., Torchilin, V. P. (2019). Hydrogels and Their Applications in Targeted Drug Delivery. Molecules, 24 (3), 603-624. DOI: https://doi.org/10.3390/molecules24030603
  13. Palii, H. K, Nechytailo, M. Ie., Kovalchuk, V. P. ta in. (2010). Porivnialna kharakterystyka antyseptychnoi aktyvnosti dekametoksynu ta furatsylinu. Zdorovia Ukrainy, 22 (251), 56-57.
  14. Giordano, S., Peltoniemi, H., Lilius, P., Salmi, A. (2013). Povidone-iodine combined with antibiotic topical irrigation to reduce capsular contracture in cosmetic breast augmentation: a comparative study. Aesthetic Surgery Journal, 33(5), 675-680. DOI: https://doi.org/10.1177/1090820X13491490
  15. Bigliardi, P. L., Alsagoff, SAL., El-Kafrawi, H. Y., Pyon, J. K., Wa C. T. C., Villa, M. A. (2017). Povidone iodine in wound healing: A review of current concepts and practices. International Journal of Surgery, 44, 260-268. DOI: https://doi.org/10.1016/j.ijsu.2017.06.073
  16. Syhhya, S., Khanna, Dzh. H. (1983). Kolichestvennyiy organicheskiy analiz po funktsionalnyim gruppam. M.: Khimiia.
  17. Dron, I., Stasiuk, A., Bukartyk, M., Luhova, Yu., Samaryk, V. (2020). Formuvannia hidroheliv na osnovi pektynu z riznym stupenem esteryfikatsii. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 3 (1), 239-244. https://doi.org/10.23939/ctas2020.01.239
  18. Zhang, K., Feng, W., Jin, C. (2020). Protocol efficiently measuring the swelling rate of hydrogels. Methods X., 7. DOI: https://doi.org/10.1016/j.mex.2019.100779
  19. Chukhrii, B. M., Klevets, L. O., Ostapiv, D. D. (1995). Kolorymetrychnyi sposib vyznachennia aktyvnosti suktsynatdehidrohenazy v spermi buhaiv. Visnyk ahrarnoi nauky, 11, 73-76.
  20. Yapeng Fang, Saphwan Al-Assaf, Glyn, O. Phillips, Katsuyoshi Nishinari, Takahiro Funami, Peter A. Williams. (2008). Binding behavior of calcium to polyu- ronates: Comparison of pectin with alginate. Carbohydrate Polymers, 72, 334-341. DOI: https://doi.org/10.1016/j.carbpol.2007.08.021
  21. Peles, Z., Zilberman M. (2012). Novel soy protein wound dressings with controlled antibiotic release: mechanical and physical properties, Acta Biomaterіalia, 8(1), 209-217. DOI: https://doi.org/10.1016/j.actbio.2011.08.022
  22. Moulay, S. (2013). Molecular iodine-polymer complexes. Journal of Polymer Engineering, 33(5), 389- 443. DOI: https://doi.org/10.1515/polyeng-2012-0122
  23. Hansch, C., Fujita, T. (1963) ρ-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. Journal of the American Chemical Society, 86, 1616-1626. https://doi.org/10.1021/ja01062a035