Research of the influence of vibroactivated lime on the hydration of portland cement and its hardening

The influence of vibro-activated lime additive on the hydration processes of Portland cement and the nature of changes in the strength of cement stone at different stages of its hardening were studied. It was established that long-term storage of vibro-activated lime in a wet state does not weaken its properties as a modifying additive. The methods of determining the heat release of cement dough during hardening and X-ray phase analysis show that the addition of vibro-activated lime at the initial stages of hardening accelerates the physicochemical processes of hydration of calcium silicates of clinker minerals.

 

1. Hewlett, P. C., Liska, M. (2019). Leas chemistry of cement and concrete. Oxford, Butterworth-Heinemann.

2. Kurdowski, W. (2014). Cement and concrete chemistry. Springer Netherlands.

3. Kurdowski, W. (1991). Chemia cementu. Warsaw: PWN.

4. Shtark, Y., Vykht, B. (2008). Tsement y yzvest. Kyiv.

5. Runova, R. F., Dvorkin, L. Y., Dvorkin, O. L., Nosovskyi, Yu. L. (2012). Viazhuchi materialy. Kyiv, Osnova.

6. Qin, C., Yin, J., An, H., Liu, W., Feng, B. (2012). Performance of extruded particles from calcium hydroxide and cement for CO2 capture. Energy Fuels, 26, 154–161. https://doi.org/10.1021/ef201141z

7. Lanzón, M., Madrid, J. A.; Martínez-Arredondo, A., Mónaco, S. (2017). Use of diluted Ca(OH)2 suspensions and their transformation into nanostructured CaCO3 coatings: A case study in strengthening heritage materials (stucco, adobe and stone). Appl. Surf. Sci., 424, 20–27. https://doi.org/10.1016/j.apsusc.2017.02.248

8. Yakymechko, Ya., Jaskulski, R., Lutsyuk, I. (2019). New ways of utilizing lime in modern building technology. Mater. Struct. Technol., 2, 61–69. https://doi.org/10.31448/mstj.02.01.2019.61-69 DOI: 10.31448/mstj.02.01.2019.61-69

9. Sakellariou, K. G., Criado, Y. A., Tsongidis, N. I., Karagiannakis, G., Konstandopoulos, A. G. (2017). Multi-cyclic evaluation of composite CaO-based structured bodies for thermochemical heat storage via the CaO/Ca(OH)2 reaction scheme. Sol. Energy, 146, 65–78. http://dx.doi.org/10.1016%2Fj.solener.2017.02.013

10. Samanta, A., Chanda, D. K., Das, P. S., Ghosh, J., Mukhopadhyay, A. K., Dey, A. (2016). Synthesis of nano calcium hydroxide in aqueous medium. J. Am. Ceram. Soc., 99, 787–795. https://doi.org/10.1111/jace.14023

11. López-Arce, P., Gomez-Villalba, L. S., Pinho, L., Fernández-Valle, M. E., de Buergo, M. Á., Fort, R. (2010). Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques. Mater. Character., 61, 168–184. https://doi.org/10.1016/j.matchar.2009.11.007

12. Taglieri, G., Mondelli, C., Daniele, V., Pusceddu, E., Scoccia, G. (2014). Synthesis, textural and structural properties of calcium hydroxide nanoparticles in hydro-alcoholic suspension. Adv. Mater. Phys. Chem., 4, 50–59. http://dx.doi.org/10.4236/ampc.2014.43008

13. Liu, T., Zhu, Y., Zhang, X., Zhang, T., Zhang, T., Li, X. (2010). Synthesis and characterization of calcium hydroxide nanoparticles by hydrogen plasma-metal reaction method. Mater. Lett., 64, 2575–2577. http://dx.doi.org/10.1016%2Fj.matlet.2010.08.050

14. Madrid, J. A., Lanzón, M. (2017). Synthesis and morphological examination of high-purity Ca(OH)2 nanoparticles suitable to consolidate porous surfaces. Appl. Surf. Sci., 424, 2–8. https://doi.org/10.1016/j.apsusc.2017.03.210

15. Asikin-Mijan, N.б Taufiq-Yap, Y. H., Lee, H. V. (2015). Synthesis of clamshell derived Ca(OH)2 nanoparticles via simple surfactant-hydration treatment. Chem. Eng. J., 262, 1043–1051. http://dx.doi.org/10.1016%2Fj.cej.2014.10.069

16. Roy, A., Bhattacharya, J. (2010). Synthesis of Ca(OH)2 nanoparticles by wet chemical method. Micro Nano Lett., 5, 131. https://doi: 10.1049/mnl.2010.0020

17. Zahrai, A. I., Borovets, Z. I., Novitskyi, Ya. M., Chekailo, M. V., Yakymechko, Ya. B. (2019). The effect of dispersed lime on the hardening of cement stone. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 2 (2), 55–61. https://doi.org/10.23939/ctas2019.02.055

18. Zahrai, A. I., Borovets, Z. I., Lutsyuk, I. V., Novitskyi, Ya. M. (2020). Kryterii doslidzhennia protsesu dysperhuvannia systemy hidratne vapno-voda. Chemistry, Technology and Application of Substances, 3 (2), 23–27. https://doi.org/10.23939/ctas2020.02.023

19. Zahrai, A. I., Borovets, Z. I., Lutsyuk, I. V., Novitskyi, Ya. M. (2021).Vstanovlennia optymalnykh parametriv vibroaktyvuvannia hidratnoho vapna. Pytannia khimii ta khimichnoi tekhnolohii, 6 (139), 25–31. http://dx.doi.org/10.32434/0321-4095-2021-139-6-25-31

20. Yakymechko, Ya., Lutsyuk, I., Jaskulski, R., Dulnik, J., Kropyvnytska, T. (2020). The Effect of Vibro-Activation Time on the Properties of Highly Active Calcium Hydroxide. Buildings, 10 (111), 1–8. https://doi.org/10.3390/buildings10060111