STUDY OF FINE-GRAINED FIBER CONCRETE CRACKING RESISTANCE FROM THE POINT OF VIEW OF DESTRUCTION MECHANICS

Fiber reinforced concrete began to appear in the market in the 60s of the last century, and since then the interest in this type of reinforcement has been steadily growing. The article presents the results of studies on the crack resistance of concrete reinforced with polypropylene fibers of various lengths and volume concentrations in fine-grained concrete. Waste from the wet magnetic separation of the Poltava mining and concentration plant was used as an aggregate in the concrete. Polypropylene fibers with the various lengths diameter of 0.2 mm were used for reinforcement. The influence of the length and volume concentration of fibers on the crack resistance of the same strength concrete of was studied. The study results indicate that the increase in the length and volume concentration of fibers, within the limits of the experiment, significantly affects the crack resistance of fine-grained concrete.

Doroshenko O. Yu. (2014). Dosvid zastosuvannia fibrobetonu u budivnytstvi. Zbirnyk naukovykh prats Derzhavnoho ekonomiko-tekhnolohichnoho universytetu transportu. Ser. Transportni systemy i tekhnolohii, 24, 5-10 (in Ukrainian). http://nbuv.gov.ua/UJRN/Znpdetut_tsit_2014_24_3
B. Fatahi, H. Khabbaz, B. Fatahi.(2012) Mechanical characteristics of soft clay treated with fiber and cement. Geosynthetics International 19(3):252-262 . DOI:10.1680/gein.12.00012
https://doi.org/10.1680/gein.12.00012
Sadek S. Compressive Strength of Fiber-Reinforced Lightly-Cement Stabilized Sand. Proceedings of 18th International Conference on soil Mechanics and Geotechnical Engineering, 1, 2593-2596. https://www.cfms-sols.org/sites/default/files/Actes/2593-2596.pdf
M. A. Sanytskyi, T. P. Kropyvnytska, O. Ya. Shiyko, Yu. B. Bobetskyi, A. B. Volyanyuk. (2021) High-strength steel fiber-reinforced concrete for fortification structures, JTBP, 3(1), DOI: 10.23939/jtbp2021.01
Fowler, D. (2008). Repair materials for concrete structures. Failure, Distress and Repair of Concrete Structures, 194-207. https://doi.org/10.1533/9781845697037.2.194
https://doi.org/10.1533/9781845697037.2.194
Mohammad hosseini, H., Tahir, M. M., Alyousef, R., & Alabduljabbar, H. (2019). Production of sustainable concrete composites comprising waste metalized plastic fibers and palm oil fuel ash. New Materials in Civil Engineering, 435-457. https://doi.org/10.1016/B978-0-12-818961-0.00012-0
https://doi.org/10.1016/B978-0-12-818961-0.00012-0
Yang, L., & Lin, X. (2021). A constitutive model for numerical modeling of steel fiber-reinforced concrete. Advances in Engineered Cementitious Composites, 389-411. https://doi.org/10.1016/B978-0-323-85149-7.00011-2
https://doi.org/10.1016/B978-0-323-85149-7.00011-2
Momber, A. W. (2004). Fundamentals of Hydrodemolition. Hydrodemolition of Concrete Surfaces and Reinforced Concrete, 23-65. https://doi.org/10.1016/B978-185617460-2/50002-0
https://doi.org/10.1016/B978-185617460-2/50002-0
Akhmednabiev, R., Bondar, L., Demchenko, O., Shulgin, V. (2022). Some Properties of Fiber-Reinforced Road Concrete Using Iron Ore Dressing Wastes. In: Onyshchenko, V., Mammadova, G., Sivitska, S., Gasimov, A. (eds) Proceedings of the 3rd International Conference on Building Innovations. ICBI 2020. Lecture Notes in Civil Engineering, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-030-85043-2_2
https://doi.org/10.1007/978-3-030-85043-2_2
Novytskyi O. (2021).Soil-cement piles fiber reinforced, JTBP, 3(1), 113-119. https://doi.org/10.23939/jtbp2021.01.113
https://doi.org/10.23939/jtbp2021.01.113
Brown J.H. Measuring the fracture toughness of cement paste and mortar. BSc, MInstP,
https://doi.org/10.1680/macr.1972.24.81.185
https://doi.org/10.1680/macr.1972.24.81.185
Perfilov, V.A. Strength and crack-resistance of concrete with fibre fillers and modifying nano-additives. Magazine of Civil Engineering. 2023. 119(3). Article no. 11909. DOI: 10.34910/MCE.119.9
Hunyak O.. High-strength concrete for transport purposes with increased Durability. Dissertation. Lviv Polytechnic National University UDC 691.328. https://lpnu.ua/sites/default/files/2020/dissertation/1662/dis.pdf
Miarka, P., Seitl, S., & Bílek, V. (2018). Comparison of Fracture Resistance of the Normal and High Strength Concrete Evaluated by Brazilian Disc Test. Proceedings, 2(8), 399. https://doi.org/10.3390/ICEM18-05236
https://doi.org/10.3390/ICEM18-05236
Malíková, L., Veselý, V., & Seitl, S. (2016). Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria. International Journal of Fatigue, 89, 99-107. https://doi.org/10.1016/j.ijfatigue.2016.01.010
https://doi.org/10.1016/j.ijfatigue.2016.01.010
Seitl, S., Miarka, P., & Bílek, V. (2018). The mixed-mode fracture resistance of C 50/60 and its suitability for use in precast elements as determined by the Brazilian disc test and three-point bending specimens. Theoretical and Applied Fracture Mechanics, 97, 108-119. https://doi.org/10.1016/j.tafmec.2018.08.003
https://doi.org/10.1016/j.tafmec.2018.08.003
 Irvin G.R. (1958) Handbuch der Physik. Berlin. Springe.. Bd. 6. pp. 551-590 ISBN: 978-3-642-90776-0 / 978-3642907760 / 9783642907760
Guz, A.N. (1982). Fracture of Unidirectional Composite Materials Under the Axial Compression. In: Sih, G.C., Tamuzs, V.P. (eds) Fracture of Composite Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7609-2_15
https://doi.org/10.1007/978-94-009-7609-2_15
Panasyuk V.V., Berezhnitsky L.T.(1981) Assessment of the crack resistance of cement concrete by fracture toughness. Concrete and reinforced concrete,  No. 2 p. 16-19 https://www.google.com/search?
Korten H. (1976) Fracture mechanics of composites. in the book Destruction vol. 7. part 1 p. 403-409. https://books.totalarch.com/fracture_vol_7_1 .
Evans A. Hur A. Porter D. (1979)  Crack resistance of ceramics. in the book Mechanics of Fracture. p. 134-164. https://maxbook.kiev.ua/ua/p1542053344-mehanika-razrusheniya-razrushenie...