DETERMINATION OF THE HEAT OF COMBUSTION OF VEGETABLE RAW MATERIALS AND CHARCOAL

The values of the highest heat of combustion for the dry ashless state of combustion of 35 samples of vegetable raw materials and 35 charcoal were determined. The need for calculating indicators of their technical and elemental analysis was established. Mathematical and graphical relationships between the actual and estimated values of the highest heat of combustion of plant raw materials for the production of biogas and charcoal were developed. A statistical analysis of the dependence data was performed. The results of the analysis indicate the adequacy of the developed dependencies, and allow us to draw a conclusion about the possibility of predicting with high accuracy the value of the higher heat of combustion of vegetable raw materials by carbon or oxygen content, and charcoal  for this determination of the yield of volatile substances or non-volatile carbon.

1. Zapaіowska А., Bashutska U. (2016). Otrymannya derevnoyi biomasy z enerhetychnoyu metoyu u Polʹshchi ta Ukrayini. Naukovi pratsi Lisivnychoyi akademiyi nauk Ukrayiny, №14. S. 17-22. https:// doi.org/ 10. 15421/411601.
2. Klymenko V. V., Kravchenko V. I., Lychuk M. V., Soldatenko V. P. (2016). Eksperymentalʹna otsinka vyhotovlennya tverdoho biopalyva z kompozytiv na osnovi roslynnykh vidkhodiv. Énerhotekhnolohyy y resursosberezhenye, № 3. S. 18-24. http://nbuv. gov. ua/UJRN/ ETRS_ 2016_3_4.
3. Klymenko V. V., Kravchenko V. I., Lychuk M. V., Soldatenko V. P. (2016). Eksperymentalʹna otsinka vyhotovlennya tverdoho biopalyva z kompozytiv na osnovi roslynnykh vidkhodiv. Énerhotekhnolohyy y resursosberezhenye, № 3. S. 18-24. http://nbuv. gov. ua/UJRN/ ETRS_ 2016_3_4.
4. Barbash V.A. (2018). Innovatsiyni tekhnolohiyi roslynnoho resursozberezhennya / navchalʹnyy posibnyk // K.: Karavela,- 288 s.
5. Plachkova S. H., Plachkov I.V., Dunaevsʹka N.I., Podhurenko V.S., Shylyayev B.A., Landau YU.O., Syhal I.YA., Danylko H.D. (2012-2013). Enerhetyka: istoriya, suchasnistʹ i maybutnye. Knyha 5. Elektroenerhetyka ta okhorona navkolyshnʹoho seredovyshcha. Funktsionuvannya enerhetyky v suchasnomu sviti. - K.: Enerhetyka: istoriya, suchasnistʹ i maybutnye,- 589 s. http://energetika.in.ua/ru/books/book-1
6. Miroshnychenko D.V., Malik I.K. Vyznachennya teploty z·horyannya roslynnoyi syrovyny ta derevynnoho vuhillya. Vuhlekhimichnyy zhurnal. 2023. №2. S. 31-48. https://doi.org/10.31081/1681-309X-2023-0-2-31-481
https://doi.org/10.31081/1681-309X-2023-0-2-31-48
7. Malik I., Contreras A.B., Hassan N., El Rasoul A. (2022). Prediction of the Higher Heating Value of Charcoal. Petroleum and Coal. Vol.64 (1). P. 100-105. https://www.vurup.sk//wp-сontent/uploads/2022/05/PC-X_Miroshnichenko_121.pdf
8. Malik I.K. Patent Ukrayiny na korysnu modelʹ №133566. Ustanovka bezperervnoyi termichnoyi pererobky roslynnoyi syrovyny. Promyslova vlasnistʹ. 2019. №7.
9. Ahmaruzzaman M. (2008). Proximate analyses and predicting HHV of chars obtained from cocracking of petroleum vacuum residue with coal, plastics and biomass. Bioresource Technology. 2008. 99 (11). P. 5043-5050. https://doi.org/10.1016/j.biortech.2007.09.021 
https://doi.org/10.1016/j.biortech.2007.09.021
10. Parikh J., Channiwala S.A., Chosal G.K. (2005). A correlation for calculating HHV from proximate analysis of solid fuels. Fuel. 84. P. 487-494.
https://doi.org/10.1016/j.fuel.2004.10.010
11. Cordero T., Marquez F., Rodriquez-Marasol J., Rodriguez J.J. (2001). Predicting heating values of lignocellulosic and carbonaceous materials from proximate analysis. Fuel. 80. P. 1567-1571.
https://doi.org/10.1016/S0016-2361(01)00034-5
12. Jimenez L., Gonzalez F. (1991). Study of the physical and chemical properties of lignocellulosic residues with a view to the production of fuels. Fuel. 70. P. 947-950.
https://doi.org/10.1016/0016-2361(91)90049-G
13. Noushabadi A.S., Dashti A., Ahmadijokani F., Hu J., Mohammadi A.H. (2021). Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniquez and improved equation. Renewable Energy. 179. P. 550-562.  https://doi.org/10.1016/j.renene.2021.07.003
https://doi.org/10.1016/j.renene.2021.07.003