Видалення іонів важких металів з водного розчину нанооксидом графену

2023;
: cc. 894 - 902
1
Chemical Engineering Department, University of Baghdad
2
Chemical engineering department, Baghdad university

Метою дослідження є отримання та характеризація нанооксиду графену (ОГ) перед використанням його для періодичної адсорбції для вилучення іонів важких металів (ванадію V+5, нікелю Ni+2 та кадмію Cd+2) з водних розчинів, забруднених цими металами, які були використані для імітації забруднюючих елементів, знайдених у рідких промислових стічних водах нафтопереробного заводу Доура в Багдаді, Ірак. У цьому дослідженні для синтезу використовували модифікований метод Гаммерса. Основними компонентами для приготування ОГ були порошок графіту (40-100 мкм), кислота H2SO4 і порошок KMnO4. Структуру синтезованого ОГ та його оптичні властивості досліджували методами ІЧ-спектроскопії з перетворенням Фур’є, оптичної, Раман-, енергодисперсійної рентгенівської спектроскопії, рентгеноструктурного аналізу та СЕМ. Було досліджено вплив різних параметрів для отримання найефективнішого вилучення V+5, Ni+2 і Cd+2 за pH 7-8. Швидкість перемішування становила 375 об/хв, час встановлення рівноваги для всіх іонів металів - 150 хвилин. Ефективність вилучення обернено пропорційна до температури, при цьому найбільше вилучення відбувається за 20 °C, а найменше - за 50 °C. Для Cd+2 і Ni+2 потрібна кількість ОГ становила 0,5 г, тоді як для V+5 - 0,6 г.

  1. Breida, M.; Younssi, S.A.; Ouammou, M.; Bouhria, M.; Hafsi, M. Pollution of Water Sources from Agricultural and Industrial Effluents: Special Attention to NO3–, Cr(VI), and Cu(II). In Water Chemistry; Eyvaz, M.; Yüksel, E.; Eds. IntechOpen, 2020. https://doi.org/10.5772/intechopen.86921
  2. Phan, T.A; Dang, K.H; Dinh, L.N. Synthesis and Preparation of Hydrophobic CNTs-Coated Melamine Formaldehyde Foam by Green and Simple Method for Efficient Oil/Water Separation. Chem. Chem. Technol. 2020, 14, 531–537. https://doi.org/10.23939/chcht14.04.531
  3. Allafta, H.; Opp, C. Spatio-Temporal Variability and Pollution Sources Identification of the Surface Sediments of Shatt Al-Arab River, Southern Iraq. Sci Rep 2020, 10, 6979. https://doi.org/10.1038/s41598-020-63893-w
  4. Skiba, M.; Pivovarov, A.; Vorobyova, V. The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification. Chem. Chem. Technol. 2020, 14, 47-54. https://doi.org/10.23939/chcht14.01.047
  5. Dzyazko, Y.; Ponomarova, L.; Volfkovich, Y.; Tsirina, V.; Sosenkin, V.; Nikolska, N.; Belyakov, V. Influence of Zirconium Hydrophosphate Nanoparticles on Porous Structure and Sorption Capacity of the Composites Based on Ion Exchange Resin. Chem. Chem. Technol. 2016, 10, 329–335. https://doi.org/10.23939/chcht10.03.329
  6. Kong, Q.; Preis, S.; Li, L.; Luo, P.; Wei, C.; Li, Z.; Hu, Y.; Wei, C. Relations between Metal Ion Characteristics and Adsorption Performance of Graphene Oxide: A Comprehensive Experimental and Theoretical Study. Sep. Purif. Technol. 2020, 232, 115956. https://doi.org/10.1016/j.seppur.2019.115956
  7. Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. https://doi.org/10.1021/ja01539a017
  8. Bulin, C.; Ma, Z.; Guo, T.; Li, B.; Zhang, Y.; Zhang, B.; Xing, R.; Ge, X. Magnetic Graphene Oxide Nanocomposite: One-Pot Preparation, Adsorption Performance and Mechanism for Aqueous Mn(Ⅱ) and Zn(Ⅱ). J Phys Chem Solids 2021, 156, 110130. https://doi.org/10.1016/j.jpcs.2021.110130
  9. Chen, J.; Yao, B.; Li, C.; Shi, G. An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide. Carbon. 2013, 64, 225–229. https://doi.org/10.1016/j.carbon.2013.07.055
  10. Ali, G.A.A.; Ibrahim, S.A.; Abbas, M.N. Catalytic Adsorptive of Nickel Metal from Iraqi Crude Oil Using Non-Conventional Catalysts. Innov. Infrastruct. Solut. 2021, 6, 7. https://doi.org/10.1007/s41062-020-00368-x
  11. Tiwari, S.K.; Huczko, A.; Oraon, R.; De Adhikari, A.; Nayak, G.C. Facile Electrochemical Synthesis of Few Layered Graphene from Discharged Battery Electrode and Its Application for Energy Storage. Arab. J. Chem. 2017, 10, 556–565. https://doi.org/10.1016/j.arabjc.2015.08.016
  12. Tiwari, S.K.; Huczko, A.; Oraon, R.; De Adhikari, A.; Nayak, G.C. A Time Efficient Reduction Strategy for Bulk Production of Reduced Graphene Oxide Using Selenium Powder as a Reducing Agent. J Mater Sci. 2016, 51, 6156–6165. https://doi.org/10.1007/s10853-016-9903-x
  13. Eigler, S. Graphite Sulphate – A Precursor to Graphene. ChemComm 2015, 51, 3162–3165. https://doi.org/10.1039/C4CC09381J
  14. Türkaslan, S.S.; Ugur, Ş.S.; Türkaslan, B.E.; Fantuzzi, N. Evaluating the X-Ray-Shielding Performance of Graphene-Oxide-Coated Nanocomposite Fabric. Materials 2022, 15, 1441. https://doi.org/10.3390/ma15041441
  15. Gascho, J.L.S.; Costa, S.F.; Recco, A.A.C.; Pezzin, S.H. Graphene Oxide Films Obtained by Vacuum Filtration: X-Ray Diffraction Evidence of Crystalline Reorganization. J. Nanomater. 2019, 2019, 5963148. https://doi.org/10.1155/2019/5963148
  16. Muzyka, R.; Drewniak, S.; Pustelny, T.; Chrubasik, M.; Gryglewicz, G. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy. Materials 2018, 11, 1050. https://doi.org/10.3390/ma11071050
  17. Li, H.; Wei, Z. Impacts of Modified Graphite Oxide on Crystallization, Thermal and Mechanical Properties of Polybutylene Terephthalate. Polymers 2021, 13, 2431. https://doi.org/10.3390/polym13152431
  18. Chuah, R.; Gopinath, S.C.B.; Anbu, P.; Salimi, M.N.; Yaakub, A.R.W.; Lakshmipriya, T. Synthesis and Characterization of Reduced Graphene Oxide Using the Aqueous Extract of Eclipta prostrata. 3 Biotech. 2020, 10, 364. https://doi.org/10.1007/s13205-020-02365-4
  19. Chintalapudi, K.; Rao Pannem, R.M. Strength Properties of Graphene Oxide Cement Composites. Materials Today: Proceedings 2021, 45, 3971–3975. https://doi.org/10.1016/j.matpr.2020.08.369
  20. Cruz-Lopes, L.P.; Macena, M.; Esteves, B.; Guiné, R.P.F. Ideal pH for the Adsorption of Metal Ions Cr6+, Ni2+, Pb2+ in Aqueous Solution with Different Adsorbent Materials. Open Agric. 2021, 6, 115–123. https://doi.org/10.1515/opag-2021-0225
  21. Parastar, M.; Sheshmani, S.; Shokrollahzadeh, S. Cross-Linked Chitosan into Graphene Oxide-Iron(III) Oxide Hydroxide as Nano-Biosorbent for Pd(II) and Cd(II) Removal. Int. J. Biol. Macromol. 2021, 166, 229–237. https://doi.org/10.1016/j.ijbiomac.2020.10.160
  22. Alalwan, H.A.; Kadhom, M.A.; Alminshid, A.H. Removal of Heavy Metals from Wastewater Using Agricultural Byproducts. J WATER SUPPLY RES T. 2020, 69, 99–112. https://doi.org/10.2166/aqua.2020.133
  23. Anirudhan, T.S.; Sreekumari, S.S. Adsorptive Removal of Heavy Metal Ions from Industrial Effluents Using Activated Carbon Derived from Waste Coconut Buttons. J Environ Sci 2011, 23, 1989–1998. https://doi.org/10.1016/S1001-0742(10)60515-3
  24. Mustapha, S.; Ndamitso, M.M.; Abdulkareem, A.S.; Tijani, J.O.; Mohammed, A.K.; Shuaib, D.T. Potential of Using Kaolin as a Natural Adsorbent for the Removal of Pollutants from Tannery Wastewater. Heliyon 2019, 5, e02923. https://doi.org/10.1016/j.heliyon.2019.e02923
  25. Soliman, N.K.; Moustafa, A.F. Industrial Solid Waste for Heavy Metals Adsorption Features and Challenges; a Review. J. Mater. Res. Technol. 2020, 9, 10235–10253. https://doi.org/10.1016/j.jmrt.2020.07.045
  26. Vilardi, G.; Di Palma, L.; Verdone, N. Heavy Metals Adsorption by Banana Peels Micro-Powder: Equilibrium Modeling by Non-Linear Models. Chin. J. Chem. Eng. 2018, 26, 455–464. https://doi.org/10.1016/j.cjche.2017.06.026