Robust shape optimization using artificial neural networks based surrogate modeling for an aircraft wing

Aerodynamic shape optimization is a very active area of research that faces the challenges of highly demanding Computational Fluid Dynamics (CFD) problems, optimization with Partial Differential Equations (PDEs) as constraints, and the appropriate treatment of uncertainties.  This includes the development of robust design methodologies that are computationally efficient while maintaining the desired level of accuracy in the optimization process.  This paper addresses aerodynamic shape optimization problems involving uncertain operating conditions.  After a review of possible approaches to account for uncertainties, an Artificial Neural Network (ANN) model is used to approximate the aerodynamic coefficients when the operating conditions vary.  Robust optimization problem-solving approaches based on deterministic measurements are used, inspired by the work of Deb [Deb K., Gupta H. Introducing robustness in multi-objective optimization.  KanGAL Report 2004–2016, Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology, Kanpur, India (2004)].  The first procedure is a direct extension of a technique used for single-objective optimization.  The second is a more practical approach allowing a user to define the desired degree of robustness in a problem.  These approaches have been tested and validated in the case of the optimization of an aircraft wing profile in the transonic regime considering two uncertain variables: the Mach number and the angle of incidence.

  1. Papadimitriou D. I., Papadimitriou C.  Aerodynamic shape optimization for minimum robust drag and lift reliability constraint.  Aerospace Science and Technology.  55, 24–33 (2016).
  2. Nagawkar J., Leifsson L.  Applications of polynomial chaos-based cokriging to simulation-based analysis and design under uncertainty.  ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2020.  11B-2020, V11BT11A046 (2020).
  3. Du X., Leifsson L.  Optimum aerodynamic shape design under uncertainty by utility theory and metamodeling.  Aerospace Science and Technology.  95, 105464 (2019).
  4. Tao J., Sun G., Guo L, Wang X.  Application of a PCA-DBN-based surrogate model to robust aerodynamic design optimization.  Chinese Journal of Aeronautics.  33 (6), 1573–1588 (2020).
  5. Zhao H., Gao Z., Gao Y., Wang C.  Effective robust design of high lift NLF airfoil under multi-parameter uncertainty.  Aerospace Science and Technology.  68, 530–542 (2017).
  6. Wu X., Zhang W., Song S.  Robust aerodynamic shape design based on an adaptive stochastic optimization framework.  Structural and Multidisciplinary Optimization.  57 (3), 639–651 (2018).
  7. Sabater C., Bekemeyer P., Görtz S.  Efficient Bilevel Surrogate Approach for Optimization Under Uncertainty of Shock Control Bumps.  AIAA Journal.  58 (12), 5228–5242 (2020).
  8. Abou El Majd B.  Parameterization adaption for 3D shape optimization in aerodynamics.  International Journal of Science and Engineering.  6 (1), 61–69 (2014).
  9. Désidéri J.-A., Abou El Majd B., Janka A.  Nested and selfadaptive Bézier parameterizations for shape optimization.  Journal of Computational Physics.  224 (1), 117–131 (2007).
  10. Sabater C., Le Maître O., Congedo P. M., Görtz S.  A Bayesian approach for quantile optimization problems with high-dimensional uncertainty sources.  Computer Methods in Applied Mechanics and Engineering.  376, 113632 (2021).
  11. Schillings C., Schmidt S., Schulz V.  Efficient shape optimization for certain and uncertain aerodynamic.  Computers & Fluids.  46 (1), 78–87 (2011).
  12. Shah H., Hosder S., Koziel S., Tesfahunegn Y. A., Leifsson L.  Multi-fidelity robust aerodynamic design optimization under mixed uncertainty.  Aerospace Science and Technology.  45, 17–29 (2015).
  13. Moussaoui Z., El Bakkali H., Karafi Y., Abou El Majd B.  Bayesian Approach for Aerodynamic Shape Robust Optimization.  IISE Annual Conference and Expo 2023. 2231 (2023).
  14. Mazaheri K., Nejati A.  The Multi-point Optimization of Shock Control Bump with Constant-Lift Constraint Enhanced with Suction and Blowing for a Supercritical Airfoil.  Flow, Turbulence and Combustion.  96 (3), 639–666 (2016).
  15. Sederberg T., Parry S.  Free-Form Deformation of Solid Geometric Models.  ACM SIGGRAPH Computer Graphics.  20 (4), 151–160 (1986).
  16. Roe P. L.  Approximate Riemann solvers, parameter vectors, and differences scheme.  Journal of Computational Physics.  43 (2), 357–371 (1981).
  17. Ramachandran P., Zoph B., Le Q. V.  Searching for activation functions.  Preprint arXiv:1710.05941 (2017).
  18. Kingma D. P., Ba J. L.  Adam: A method for stochastic optimization.  Preprint arXiv:1412.6980 (2014).
  19. Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin M., Ghemawat S., Irving G., Isard M., Kudlur M., Levenberg J., Monga R., Moore S., Murray D. G., Steiner B., Tucker P., Vasudevan V., Warden P., Wicke M., Yu Y., Zheng X.  Tensorflow: A system for large-scale machine learning.  12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 265–283 (2016).
  20. Deb K., Gupta H.  Introducing robustness in multi-objective optimization.  KanGAL Report 2004–2016, Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology, Kanpur, India (2004).