OPPORTUNITIES OF WET-HANDLED COAL BOTTOM ASH USE IN BINDING MATERIALS: А REVIEW

Nowadays conventional binding material for the construction sector is Portland cement. Portland cement consists mainly of high-energy intensive with a significant carbon footprint Portland cement clinker. Reduction of clinker content in binding materials becomes the utmost priority for scientists in the field, it is reflected in manufacturers’ Sustainability Road Maps. This fact triggers searches and actions in different directions such as improving grinding technologies, chemical additives and admixtures development, and extension of the cementitious portfolio itself to increase the availability of raw materials. More and more often in construction technologies materials that relatively recently did not represent a value as cementitious due to the availability of more easy options, are being used. This article considers opportunities and aspects of wet-handled coal bottom ash use from thermal power stations.

Attia, S., Kosiński, P., Wójcik, R., Węglarz, A., Koc, D., & Laurent, O. (2022). Energy efficiency in the polish residential building stock: A literature review. Journal of Building Engineering, 45, 103461. doi:10.1016/j.jobe.2021.103461.
https://doi.org/10.1016/j.jobe.2021.103461
Khan, K., Salami, B.A., Iqbal, M., Amin, M.N., Ahmed, F., & Jalal, F.E. (2022). Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Models. Materials, 15, 3722. https://doi.org/10.3390/ma15103722.
https://doi.org/10.3390/ma15103722
2050 Carbon Neutrality Roadmap https://cembureau.eu/library/reports/2050-carbon-neutrality-roadmap/.
Sanytsky, M., Sobol, K., Shcturmay, M., & Khymko O. (2011) Low Energy Consuming Modified Composite Cements and their Properties. Chemistry & Chemical Technology, 5, 227. https://doi.org/10.23939/chcht05.02.227.
https://doi.org/10.23939/chcht05.02.227
Scrivener, K.L., John, V.M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2-26. https://doi.org/10.1016/j.cemconres.2018.03.015.
https://doi.org/10.1016/j.cemconres.2018.03.015
Sroda, В. (2020). The cement industry on the road to the Green Deal. Construction, Architecture Technologies, 3, 68-74 (in Polish).  bwmeta1.element.baztech-8fe7721f-eadb-432d-b91d-8997cc14e7d6.
Responsible and visionary: CO2-Roadmap, https://www.zement.at/service/presse/33-2022/378-roadmap
Stevulova, N., Strigac, J., Junak, J., Terpakova, E., & Holub, M. (2021). Incorporation of Cement Bypass Dust in Hydraulic Road Binder. Materials, 14, 41. https://dx.doi.org/10.3390/ma14010041.
https://doi.org/10.3390/ma14010041
Kuterasińska, J., & Król, A. (2016). New types of low-carbon cements with reduced Portland clinker content as a result of ecological actions of cement industry towards sustainable development. Economic and Environmental Studies (E&ES), 16, 3, 403-419. https://www.econstor.eu/bitstream/10419/178925/1/ees_16_3_05.pdf.
Sanytsky, M., Kropyvnytska, T., Fic, S., & Ivashchyshyn, H. (2020). Sustainable low-carbon binders and concretes. E3S Web of Conferences, 166, 06007. https://doi.org/10.1051/e3sconf/202016606007.
https://doi.org/10.1051/e3sconf/202016606007
Batog M., Bakalarz J., Synowiec K., & Dziuk D. (2022). The use of multi-component cements in construction. Construction, Architecture Technologies, 3, 66-73. (in Polish) https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-643bff6... bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5
Snellings R., Suraneni P., & Skibsted J. (2023). Future and emerging supplementary cementitious materials / Cement and Concrete Research, 171, 107199. https://doi.org/10.1016/j.cemconres.2023.107199.
https://doi.org/10.1016/j.cemconres.2023.107199
Juenger, M.C.G., Snellings, R., & Bernal, S.A. (2019). Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research, 122. 257-273. https://doi.org/10.1016/j.cemconres.2019.05.008
https://doi.org/10.1016/j.cemconres.2019.05.008
Tkaczewska, E. (2019). The influence of cement bypass dust on the properties of cement curing under normal and autoclave conditions. Structure and Environment, 11, 5-22. DOI: 10.30540/sae-2019-001
https://doi.org/10.30540/sae-2019-001
Amin, M.N., Hissan, S., Shahzada, K., Khan, K., & Bibi, T. (2019). Pozzolanic Reactivity and the Influence of Rice Husk Ash on Early-Age Autogenous Shrinkage of Concrete. Frontiers in Materials, 6, 150. doi:10.3389/fmats.2019.00150.
https://doi.org/10.3389/fmats.2019.00150
Odubela, C. A., & Oluwatobi, G. A. (2022). Properties of Laterized Concrete Incorporating Sawdust Ash as A Partial Replacement for Cement. Journal of Civil Engineering Research & Technology, 4(2), 1-6. doi: doi.org/10.47363/JCERT/2022(4)128.
https://doi.org/10.47363/JCERT/2022(4)128
Teixeiraa, E. R., Camõesa, A., & Brancob, F.G. (2019). Valorisation of wood fly ash on concrete. Resources, Conservation & Recycling, 145, 292-310. doi:10.1016/j.resconrec.2019.02.028.
https://doi.org/10.1016/j.resconrec.2019.02.028
Sobol, K., Solodkyy, S., Petrovska, N., Belov, S., Hunyak, O., & Hidei, V. (2020) Chemical composition and hydraulic properties of incinerated wastepaper sludge. Chemistry & Chemical Technology, 14(4), 538-544. https://doi.org/10.23939/chcht14.04.538
https://doi.org/10.23939/chcht14.04.538
Hunyak, O., Hidei, V., Sobol, K. & Petrovska, N. (2023). Valorization of Wastepaper Sludge Ash as Supplementary Cementitious Material in Concrete. Lecture Notes in Civil Engineering, 290, 94-100. doi:10.1007/978-3-031-14141-6_10.
https://doi.org/10.1007/978-3-031-14141-6_10
Nazar, A.M. Md, Abas, N.F., & Othuman Mydin, M.A. (2014). Study on the Utilization of Paper Mill Sludge as Partial Cement Replacement in Concrete. MATEC Web of Conferences, 10, 02001. doi:10.1051/matecconf/20141002001.
https://doi.org/10.1051/matecconf/20141002001
Yevropeiska biznes asotsiatsiia. (2021). Vykorystannia zoloshlakovykh produktiv i hirnychoi porody v dorozhnomu budivnytstvi. Yevropeiskyi dosvid i mozhlyvosti dlia Ukrainy. URL: https://eba.com.ua/wp[1]content/uploads/2021/05/White_Paper_Slag-_in_roa...
Izquierdo, M. & Querol, X. (2012). Leaching behaviour of elements from coal combustion fly ash: An overview. International Journal of Coal Geology, 94, 54-66. https://doi.org/10.1016/j.coal.2011.10.006.
https://doi.org/10.1016/j.coal.2011.10.006
Cheriaf, M., Cavalcante, J. & Pera, J. (1999). Pozzolanic properties of pulverized coal combustion bottom ash. Cement and Concrete Research, 29, 29 9, 387-1391. https://doi.org/10.1016/S0008-8846(99)00098-8.
https://doi.org/10.1016/S0008-8846(99)00098-8
Adinugroho, T. P., Ayuningtyas, U., Anggraeni, P., Febriansyah, H., Susila, M. A. D., Sasongko N. A. & Darmayanti N. T. E. (2022). Life cycle assessment of fly ash bottom ash in coal power plants: A review. IOP Conf. Series: Earth and Environmental Science, 1108, 012035. doi:10.1088/1755-1315/1108/1/012035.
https://doi.org/10.1088/1755-1315/1108/1/012035
Tirkeş, S. (2021). Utilization of wet-handled and dry-handled coal bottom ashes in Portland cement based composites. M.S. -Master of Science, Middle East Technical University. https://hdl.handle.net/11511/94324.
Cheeratot, R. & Jaturapitakkul, C. (2004). A Study of Disposed Fly Ash from Landfill to Replace Portland Cement. Waste Management, 24, 7, 701-709. doi:10.1016/j.wasman.2004.02.003.
https://doi.org/10.1016/j.wasman.2004.02.003
Saengsov, W., Nguyen, T., Chatchawan, R., & Tangtermsirikul S. (2016). Effect of Moisture Content of Wet Fly Ash on Basic Properties of Mortar and Concrete. Fourth International Conference on Sustainable Construction Materials and Technologies, Las Vegas, USA, 779-786. doi:10.18552/2016/SCMT4S247.
https://doi.org/10.18552/2016/SCMT4S247
Krivenko, P., Gots, V., Petropavlovskyi, O., Rudenko, I., Konstantynovskyi, O., & Kovalchuk, A. (2019). Development of solutions concerning regulation of proper deformations in alkali-activated cements. Eastern-European Journal of Enterprise Technologies, 5/6, 24-32. doi: 10.15587/1729-4061.2019.181150.
https://doi.org/10.15587/1729-4061.2019.181150
Zheng, X., & Wu, J. (2021). Early Strength Development of Soft Clay Stabilized by One-Part Ground Granulated Blast Furnace Slag and Fly Ash-Based Geopolymer. Frontiers in Materials, 8, 616430. doi: 10.3389/fmats.2021.616430.
https://doi.org/10.3389/fmats.2021.616430
Liu, J., Wang, Z., Xie, G., Li, Z., Fan, X., Zhang, W., & Ren, J. (2022). Resource utilization of municipal solid waste incineration fly ash-cement and alkali-activated cementitious materials: A review. Science of The Total Environment, 158254. Doi.org/10.1016/j.scitotenv.2022.158254.
https://doi.org/10.1016/j.scitotenv.2022.158254
Akmalaiuly, K., Berdikul, N., Pundienė, I., & Pranckevičienė, J. (2023). The Effect of Mechanical Activation of Fly Ash on Cement-Based Materials Hydration and Hardened State Properties. Materials (Basel),16(8), 2959. doi: 10.3390/ma16082959.
https://doi.org/10.3390/ma16082959
Shi, P., & Huang, B. (2023). Preparation of Cementitious Material with Wet Fly Ash by Hydrothermal Reaction and Calcination. Applied Sciences, 13, 1768. https://doi.org/10.3390/app13031768.
https://doi.org/10.3390/app13031768
Guerrero, A., Goñi, S., Campillo, I., & Moragues, A. (2004). Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters. Environmental Science and Technology, 38, 3209-3213. DOI: 10.1021/es0351589.
https://doi.org/10.1021/es0351589
Deraman, L.M., Abdullah, M.M.A.B., Ming, L.Y., Hussin, K., Yahya, Z., & Kadir, A.A. (2015). Utilization of bottom ash for Alkali-activated (SI-AL) materials: A review. ARPN Journal of Engineering and Applied Sciences, 10, 8, 8351-8357.
Mazouzi, W., Kacimi, L., Cyr, M., & Clastres, P. (2014). Properties of low temperature belite cements made from aluminosilicate wastes by hydrothermal method. Cement and Concrete Composites, 53, 170-177. https://doi.org/10.1016/j.cemconcomp.2014.07.001.
https://doi.org/10.1016/j.cemconcomp.2014.07.001
Novytskyi, Y., Yatsenko, V., & Topylko, N. (2022). Prerequisites for the implementation of the European experience in the use of ash-slag materials in the construction of highways: A review. Theory and Building Practice, 4, 2, 90-97. https://doi.org/10.23939/jtbp2022.02.090.
https://doi.org/10.23939/jtbp2022.02.090
Mozghovyi, V. V., Puhach, M. O., Mozghova, L. A., Kutsman, O. M., Chyzhenko, N. P., & Sokoliuk M. Yu. (2014). Napriamky zastosuvannia zoloshlakiv TES u budivnytstvi avtomobilnykh dorih. Visnyk Natsionalnoho transportnoho universytetu, (29 (1)), 199-205. (in Ukraine). http://nbuv.gov.ua/UJRN/Vntu_2014_29(1)__26.
Khan, K., Ashfaq, M., Iqbal, M., Khan, M.A., Amin, M.N., Shalabi, F.I. … Jalal, F.E. (2022). Multi Expression Programming Model for Strength Prediction of Fly-Ash-Treated Alkali-Contaminated Soils. Materials, 15, 4025. https://doi.org/10.3390/ma15114025.
https://doi.org/10.3390/ma15114025