The hydrolytic degradation of polyhydroxyalkanoates, polylactide and their mixtures in vitro in physiological solution and phosphate-salt buffer as well was researched. The hydrolysis intensity of biopolymers was evaluated via the mass loss, change in molecular weight as well as the water absorption applying the methods of infrared spectroscopy and complex thermal analysis. It was determined that films based on the researched biodegradable polymers thermostated in a phosphate-salt buffer have been degrading faster than in physiological solution.
1. Muthuraj, R., Misra, M., Mohanty, A. K. (2015). Studies on mechanical, thermal, and morphological characteristics of biocomposites from biodegradable polymer blends and natural fibers. In M. Misra, J. K. Pandey, A. K. Mohanty (Eds.), Biocomposites: Design and Mechanical Performance (pp. 93-140). Amsterdam: Elsevier.
https://doi.org/10.1016/B978-1-78242-373-7.00014-7
2. Koronis, G., Silva, A., Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Compos. Part B Eng., 44, 120-127. doi:10.1016/j.compositesb.2012.07.004
https://doi.org/10.1016/j.compositesb.2012.07.004
3. Jose, J., George, S. M., Thomas, S. (2011). Recycling of polymer blends. Recent Developments in Polymer Recycling, 37, 187-214.
4. Murariu, M. Dubois, P. (2016). PLA composites: From production to properties. Adv. Drug Deliv. Rev., 107(15), 17-46. doi:10.1016/j.addr.2016.04.003
https://doi.org/10.1016/j.addr.2016.04.003
5. Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H. N., Reis, M. A. M. (2017). Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering, 4(2), 55.doi:10.3390/bioengineering4020055
https://doi.org/10.3390/bioengineering4020055
6. Narancic, T., Verstichel, S., Chaganti, R. S., Morales-Gamez, L., Kenny, S. T., De Wilde, B., Padamati, R. B., O'Connor, K. E. (2018). Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol., 52(18), 10441-10452. doi:10.1021/acs.est.8b02963
https://doi.org/10.1021/acs.est.8b02963
7. Bugnicourt, E., Cinelli, P., Lazzeri, A., Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett., 8(11), 791-808. doi:10.3144/expresspolymlett.2014.82
https://doi.org/10.3144/expresspolymlett.2014.82
8. Koller, M., Marsalek, L., de Sousa Dias, M. M., Braunegg, G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol., 37, 24-38. doi:10.1016/j.nbt.2016.05.001
https://doi.org/10.1016/j.nbt.2016.05.001
9. Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol., 89, 161-174. doi:10.1016/j.ijbiomac.2016.04.069
https://doi.org/10.1016/j.ijbiomac.2016.04.069
10. Volova, T. G., Boyandin, A. N., Vasiliev, A. D., Karpov, V. A., Prudnikova, S. V., Mishukova, O. V., Gitelson, I. I. (2010). Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym. Degrad. Stab., 95(12), 2350-2359. doi: 10.1016/j.polymdegradstab.2010.08.023
https://doi.org/10.1016/j.polymdegradstab.2010.08.023
11. Padovani, G., Carlozzi, P., Seggiani, M., Cinelli, P. (2016). PHB-Rich Biomass and BioH2 Production by Means of Photosynthetic Microorganisms. Chem. Eng. Trans., 49, 55-60. doi:10.3303/CET1649010
12. Deroiné, M., Le Duigou, A., Corre, Y.-M., Le Gac, P.-Y., Davies, P., César, G., Bruzaud, S. (2014). Seawater accelerated ageing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polym. Degrad. Stab.2014, 105(1), 237-247. doi:10.1016/j.polymdegradstab.2014.04.026
https://doi.org/10.1016/j.polymdegradstab.2014.04.026
13. Cheng, M., Chen, P., Lan, C., Sun, Y. (2011). Structure, mechanical properties and degradation behaviors of the electrospun fibrous blends of PHBHHx/PDLLA. Polymer 52(6), 1391-1401. doi:10.1016/J.POLYMER.2011.01.039
https://doi.org/10.1016/j.polymer.2011.01.039
14. Aliotta, L., Cinelli, P., Coltelli, M. B., Righetti, M. C., Gazzano, M., Lazzeri, A. (2017). Effect of nucleating agents on crystallinity and properties of poly (lactic acid) (PLA). Eur. Polym. J., 93(5), 822-832. doi:10.1016/j.eurpolymj.2017.04.041
https://doi.org/10.1016/j.eurpolymj.2017.04.041
15. Jones, R. G., Kahovec, J., Stepto, R., Wilks, E.S., Hess, M., Kitayama, T., Metanomski, W. V. (Eds.). (2009). Compendium of polymer terminology and nomenclature: IUPAC recommendations. Cambridge: Published by The Royal Society of Chemistry.
https://doi.org/10.1039/9781847559425
16. Müller, R. J. (2005). Biodegradability of polymers: regulations and methods for testing, Biopolymers Online. doi:10.1002/3527600035.bpola012
https://doi.org/10.1002/3527600035.bpola012
17. Gogolewski, S., Javanovic, M., Perren, S.M., Hughes, M.K. (1990). Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/PHV). Biomaterials, 11, 679-685.
18. Freier, T., Kunze, C., Nischan, C., Kramer, S., Sternberg, K., Sass, M., Hopt, U. T., Schmitz, K. (2002). In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials, 23(13), 2649-57. doi:10.1016/s0142-9612(01)00405-7
https://doi.org/10.1016/S0142-9612(01)00405-7
19. Semeniuk, I., Pokynbroda, T., Kochubei, V., Midyana, H., Karpenko, O., Skorokhoda, V. (2020). Biosynthesis and characteristics of polyhydroxyalkanoates. 1. Polyhydroxybutyrates of Azotobacter vinelandii N-15. Chem. Chem. Technol.,14(4), 463-467. doi:10.23939/chcht14.04.463
https://doi.org/10.23939/chcht14.04.463
20. Koretska, N., Semeniuk, I., Pokynbroda, T., Shcheglova, N., Karpenko, O., Kytsya, A., Lubenets, V., Polish, N. (2023). Polyhydroxyalkanoates: Biosynthesis Optimization and Design of Antimicrobial Composites. Innov Biosyst Bioeng., 7(2), 32-41. doi:10.20535/ibb.2023.7.2.280017
https://doi.org/10.20535/ibb.2023.7.2.280017
21. Jacquel, N., Lo, C., Wu, H., Wei, Y., Wang, S. (2007). Solubility of Polyhydroxyalkanoates by Experiment and Thermodynamic Correlations. AIChE Journal, 53(10), 2704-2714. doi:10.1002/aic.11274
https://doi.org/10.1002/aic.11274
22. Gordon, A., Ford, R. (1973). The Chemist's Companion: A Handbook of Practical Data, Techniques, and References 1st Edition. Willey.
23. Semeniuk, I. V., Kocubei, V. V., Karpenko, O. Y., Midyana, H. H., Karpenko, O. V., Serheyev, V. V. (2019). Study of the composition of humic acids of different origins. Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 150-156. doi:10.32434/0321-4095-2019-125-4-150-156
https://doi.org/10.32434/0321-4095-2019-125-4-150-156
24. Hogan, S. A. (1996). Solution Properties and Molecular Size of Polyhydroxybutyrate from Recombinant Escherichia coli. (Master of Science). Massachusetts Institute of Technology, Department of Mechanical Engineering, Massachusetts.
25. Akita, S., Einaga, Y., Miyaki, Y., Fujita, H. (1976). Solution Properties of Poly(D-β-hydroxybutyrate). 1. Biosynthesis and characterization. Macromolecules, 9(5), 774-780. doi:10.1021/ma60053a017
https://doi.org/10.1021/ma60053a017