LIPOLYTIC ENZYMES: BIOLOGICAL FEATURES AND APPLICATIONS IN THE FOOD INDUSTRY

The article summarizes the available information on lipolytic enzymes of microbial origin. It discusses the peculiarities of their biosynthesis, substrate specificity, activators, and inhibitors. The focus is on lipases and lipoxygenases of fungal origin, which have advantages over bacterial enzymes due to their low extraction costs, and thermal and pH stability. The article also analyzes the application of lipolytic enzymes in food technologies. It demonstrates the practicality of combining lipases and lipoxygenases into complex preparations to ensure a synergistic effect on the quality of target products.

  1. Enzymes Market Size, Share, Trends & Growth Report, 2030. (2024). Retrieved from www. Enzymes Market Size, Share, Trends & Growth Report, 2030 (grandviewresearch.com).
  2. Fatima, S., Faryad, A., & Parvaiz A.  (2021). Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnol. Appl. Biochem. 68, 445–458.
  3. Abdullahi, N., Atiku, M. K. & Umar N. B. (2021). The roles of enzyme in food processing - an overview. FUDMA Journal of Sciences (FJS), 5 (1), 151 – 164.
  4. Ali, S., Khan, S.A., & Lee I.-J. (2023). The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms, 11, 510. https://doi.org/ 10.3390/microorganisms11020510.
  5. Wiltschi, B., Cernava, T., Dennig, A., Galindo Casas, M., Geier, M., Gruber, S., …Kratzer, R. (2020). Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol. Adv., 40, 107520.
  6. Aravindan, R., Anbumathi, P., & Viruthagiri, T. (2007). Lipase applications in food industry. Indian J. Biotechnol. 6, 141–158.
  7. Yang, W., Lu, F., & Liu, Y.  (2023). Recent Advances of Enzymes in the Food Industry. Foods, 12, 4506. https://doi.org/10.3390/ foods12244506.
  8. Chandra, P., Enespa, & Kumar Arora P. (2020). Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact, 19, 169. https://doi.org/10.1186/s12934-020-01428-.8
  9. Stergiou, P.Y., Foukis, A, & Papamichael, E. M. (2013). Advances in lipase-catalyzed esterification reactions. Biotechnol Adv., 31(8), 1846–1859.
  10. Yao, W., Liu, K., Liu, H., Jiang, Y., Wang, R., Wang, W. Wang, T. (2021) A Valuable Product of Microbial Cell Factories: Microbial Lipase. Front. Microbiol., 12:743377. doi: 10.3389/fmicb.2021.743377
  11. Araujo, S.C., Ramos, M.R., do Espírito Santo, E.L., de Menezes, L.H.S., de Carvalho, M.S., Tavares, I.M., … de Oliveira, J. R.  (2022). Optimization of lipase production by Penicillium roqueforti ATCC 10110 through solid-state fermentation using agro-industrial residue based on a univariate analysis. Prep. Biochem. Biotechnol., 52, 325–330.
  12. Patil, K. J., Chopda, M. Z., & Mahajan, R. T. (2011). Lipase biodiversity. Indian Journal of Science and Technology. 4 (8), 971-982.
  13. Bialecka-Florjanczyk, E., Fabiszewska, A.U., & Kurylowicz, A. (2018). Synthetic and natural lipase inhibitors. Mini-Rev Med Chem., 18, 672.
  14. Pogori, N., Cheikhyoussef, A., & Wang, D. (2008). Production and biochemical characterization of an extracellular lipase from Rhizopus chinensis CCTCC M201021.  Biotechnology. 7 (4), 710-717.
  15. Nascimento, F.V., Lemes, A.C., & Zarur Coelho, M.A. (2022). A Temporal Evolution Perspective of Lipase Production by Yarrowia lipolytica in Solid-State Fermentation. Processes, 10, 381. https://doi.org/ 10.3390/pr10020381.
  16. Barth, G. (2013). Yarrowia lipolytica; Springer: Berlin/Heidelberg, Germany, p. 268.
  17. Pignède, G., Wang, H., & Nicaud, J.M.  (2000). Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J. Bacteriol., 182, 2802–2810.
  18. Sassi, H., Delvigne, F., & Fickers, P.  (2016). Deciphering how LIP2 and POX2 promoters can optimally regulate recombinant protein production in the yeast Yarrowia lipolytica. Microb. Cell Fact., 15, 159.
  19. Chrisnasari, R., Hennebelle, M., & Ewing, T.A. (2022). Bacterial lipoxygenases: Biochemical characteristics, molecular structure and potential applications. Biotechnology Advanceshttps://doi.org/10.1016/j.biotechadv.2022.108046
  20. Ma, K., Nunemaker, C.S., & Nadler, J. L. (2010). 12-Lipoxygenase Products Reduce Insulin Secretion and {beta}-Cell Viability in Human Islets. J Clin Endocrinol Metab., 95 (2):887-93. doi: 10.1210/jc.2009-1102.
  21. Heshof, R., de Graaf, & Butchert, J.  (2015). Industrial potential of lipoxygenases. Critical Reviews in Biotechnology, 36 (4), 665-674. doi: 10.3109/07388551.2015.1004520
  22. Karrer, D, & Rühl, M. (2019). A new lipoxygenase from the agaric fungus Agrocybe aegerita: Biochemical characterization and kinetic properties. PLoS One. 14(6), e0218625. doi: 10.1371/journal.pone.0218625. PMID: 31216342; PMCID: PMC6584016.
  23. Hayward, S., Cilliers, T., & Swart, P. (2017). Lipoxygenases: From Isolation to Application. Compr Rev Food Sci Food Saf. 16(1), 199-211. doi: 10.1111/1541-4337.12239.
  24. Patel, D.D., Patel. R.R., & Thakkar, V.R. (2015). Purification, characterization and application of lipoxygenase isoenzymes from Lasiodiplodia theobromae. Appl Biochem Biotechnol. 175(1), 513-525. doi: 10.1007/s12010-014-1278-3.