PECULIARITIES OF GRAFT POLYMERIZATION INITIATED FROM THE PEROXIDIZED SURFACE OF MINERAL NANOPARTICLES

The peculiarities of graft polymerization of different nature vinyl monomers initiated from the surface of SiO2, Fe3O4, and hydroxyapatite nanoparticles modified by peroxide-containing copolymers were studied. It was shown that the developed surface of NPs has a significant effect on the kinetics of the polymerization process. The order of polymerization rate with respect to initiator concentration is equal to 0,58. The polymerization rate, amount of grafted polymer and grafting efficiency increase with increasing concentration of peroxidized mineral nanoparticles in reaction mixture.

1. Alexandre, M., Dubois, P., Sun, T., Garces, J.M. & Jérôme R. (2002). Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique: synthesis and mechanical properties. Polymer, 43(8), 2123-2132. Doi: 10.1016/S0032-3861(02)00036-8

2. Haeri, S.Z., Ramezanzadeh, B.  & Asghari M. (2017). A novel fabrication of a high performance SiO2-graphene oxide (GO) nanohybrids: Characterization of thermal properties of epoxy nanocomposites filled with SiO2-GO nanohybrids. Journal of Colloid and Interface Science, 493, 111-122. Doi: 10.1016/j.jcis.2017.01.016

3. Shevchuk, O., Tokarev, S., Serdiuk, V., Chobit, M., Nikitishyn, E., Dolynska, L., …Tokarev, V. (2015). Thin polymer films grafted to the solid surface with in situ synthesized CdS nanocrystals. Journal of Polymer Research, 22(9), 172. Doi:10.1007/s10965-015-0807-2.

4. de Oliveira, A.D., Beatrice C.A.G. (2019). Polymer nanocomposites with different types of nanofiller. In S. Sivasankaran (Ed.) Nanocomposites - recent evolutions. IntechOpen. doi: 10.5772/intechopen.73364.

5. Huang, T.-C., Yeh, J.-M. & Lai, C.-Y. (2012). Polymer nanocomposite coatings. In F. Gao (Ed.), Advances in Polymer Nanocomposites. Types and Applications. (pp. 605-638) Cambridge: Woodhead Publishing Limited.

6. Mulvaney, P. (2001). Not All That’s Gold Does Glitter. MRS Bulletin 26, 1009–1014. Doi: 10.1557/mrs2001.258.

7. Crosby, A. & Lee, J.-Y. (2007). Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polymer Review, 47 (2), 217-229. Doi: 10.1080/15583720701271278

8. Ramanathan, T., Abdala, A. A. & Stankovich, S. (2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3, 327–331. Doi: 10.1038/nnano.2008.96.

9. Haraguchi, K. & Takehisa T. (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Advanced Materials, 14(16), 1120–1124. Doi.: 1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9

10. Zhang, Q., Zhang, L. & Lin J. (2017). Percolating behavior of nanoparticles in block copolymer host: hybrid particle-field simulations. Journal of Physical Chemistry C, 121(42), 23705-23715. Doi: 10.1021/acs.jpcc.7b07337

11. Moniruzzaman, M. & Winey K.I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules, 39(16), 5194–5205. Doi: 10.1021/ma060733p

12. de Leon, A.C., Rodier, B.J. & Bajamundi C. (2018) Plastic metal-free electric motor by 3D printing of graphene-polyamide powder. ACS Applied Energy Materials, 1(4), 1726–1733. Doi: 10.1021/acsaem.8b00240.

13. Ashraf, M. A., Peng, W., Zare Y, & Rhee K. Y. (2018). Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Research Letters 13, 214. Doi: 10.1186/s11671-018-2624-0.

14. Shevchuk, O., Wagenknecht, U., Wiessner, S., Bukartyk, N., Chobit, M. & Tokarev, V. (2015). Flame-retardant polymer composites on the basis of modified magnesium hydroxide. Chemistry and Chemical Technology, 9(2), 149-155. Doi: 10.23939/chcht09.02.149

15. Hiremath, A., Murthy, A.A., Thipperudrappa, S. & Bharath, K. N. (2021). Nanoparticles filled polymer nanocomposites: a technological review. Cogent Engineering, 8(1), 1991229. Doi: 10.1080/23311916.2021.1991229.

16. Althues, H., Henle, J.  & Kaskel, S. (2007). Functional inorganic nanofillers for transparent polymers. Chemical Society Review, 36, 1454-1465. Doi: 10.1039/B608177K.

17. Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y. & Kumar, R. (2013). Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites–A review. Progress in Polymer Science, 38, 1232–1261. Doi: 10.1016/j.progpolymsci.2013.02.003.

18. Voronov, S., Tokarev V., Oduola, K., Lastukhin, Yu. (2000). Polyperoxide surfactants for interface modification and compatibilization of polymer colloidal systems. I. Synthesis and properties of polyperoxide surfactants. Journal of Applied Polymer Science, 76, 1217–1227. Doi: 10.1002/(SICI)1097-4628(20000523)76:8<1217::AID-APP2>3.0.CO;2-F.

19. Shevchuk, O.M., Bukartyk, N.M., Nadashkevych, Z.Ya., Tokarev V.S. (2019). Synthesis and properties of silica nanoparticles with functional polymer shell. Chemistry, Technology and Application of Substances, 2(1), 153-158. Doi: 10.23939/ctas2019.01.153.

20. Serdiuk, V., Shevchuk, O., Bukartyk, N., Kovalenko, T., Borysiuk, A., Tokarev, V. (2021). Synthesis and properties of magnetite nanoparticles with peroxide-containing polymer shell and nanocomposites based on them. Journal of Applied Polymer Science, 138(36), 50928. Doi: 10.1002/app.50928.

21. Kong, Y., Jie, W., Yuan, W.C., Bao, L.Yu. (2007). A study on in vitro and in vivo bioactivity of nano hydroxyapatite/polymer biocomposite. Chinese Science Bulletin, 52(2), 267-271. Doi: 10.1007/s11434-007-0035-1

22. Bagdasar'yan, Kh. S. (1968). Theory of free-radical polymerization. Jerusalem: Israel Program for Scientific Translations.

23.Odian G. (2004). Principles of polymerization. Hoboken: John Wiley & Sons, Inc.