Research on "Aesculus" Setting Retarder for Grouting Mortars

In Ukraine, the number of reagents regulating the properties of tail blends used for cementing deep oil and gas wells has decreased. Therefore, there is a need to expand the range of these reagents produced domestically to replace the known reagent, nitrilotrimethylphosphonic acid, which was produced in russia. The new reagent-retarder for oil-well cement should have a wide temperature range of application, complexity of action, and meet the requirements of environmental safety.

[1] Roussel, N.; Bessaies-Bey, H.; Kawashima, S.; Marchon, D.; Vasilic, K.; Wolfs, R. Recent Advances on Yield Stress and Elasticity of Fresh Cement-Based Materials. Cem. Concr. Res. 2019, 124, 105798. https://doi.org/10.1016/j.cemconres.2019.105798
[2] Yuan, Q.; Zhou, D.; Khayat, K.H.; Feys, D.; Shi, C. On the Measurement of Evolution of Structural Build-Up of Cement Paste with Time by Static Yield Stress Test vs. Small Amplitude Oscillatory Shear Test. Cem. Concr. Res. 2017, 99, 183–189. https://doi.org/10.1016/j.cemconres.2017.05.014
[3] El Bitouri, Y.; Azéma, N. On the “Thixotropic” Behavior of Fresh Cement Pastes. Eng. 2022, 3, 677–692. https://doi.org/10.3390/eng3040046
[4] Mostafa, A.M.; Yahia, A. New Approach to Assess Build-Up of Cement-Based Suspensions. Cem. Concr. Res. 2016, 85, 174–182. https://doi.org/10.1016/j.cemconres.2016.03.005
[5] Kurdowski, W.; Baran, T. Calcined Marl as a Potential Main Component of Cement. Cement Wapno Beton 2022, 27, 346–354. https://doi.org/10.32047/CWB.2022.27.5.4
[6] Bulavin, V.I.; Shkolnikova, T.V.; Ved, M.V.; Yaroshok, T.P.; Kramarenko, A.V.; Volobuiev, M.M.; Stepanova, I.I.; Ryshchenko, I.M.; Rusinov, O.I.; Melnyk, T.V. General chemistry; NTU "KhPI", 2019.
[7] Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford Publishing, 1997.
[8] Zhang, K.; Mezhov, A.; Schmidt, W. Chemical and Thixotropic Contribution to the Structural Build-Up of Cementitious Materials. Constr. Build. Mater. 2022, 345, 128307. https://doi.org/0.1016/j.conbuildmat.2022.128307
[9] Thiedeitz, M.; Krаnkel, T.; Gehlen, C. Viscoelastoplastic Classification of Cementitious Suspensions: Transient and Non-Linear Flow Analysis in Rotational and Oscillatory Shear Flows. Rheol. Acta 2022, 61, 549–570. https://doi.org/10.1007/S00397-022-01358-9
[10] Tymchuk, I.; Shkvirko, O.; Sakalova, H.; Malovanyy, M.; Dabizhuk, T.; Shevchuk, O.; Matviichuk, O.; Vasylinych, T. Wastewater a Source of Nutrients for Crops Growth and Development. J. Ecol. Eng. 2020, 21, 88–96. https://doi.org/10.12911/22998993/122188
[11] Tulaydan, Y.; Malovanyy, M.; Kochubei, V.; Sakalova, H. Treatment of High-Strength Wastewater from Ammonium and Phosphate Ions with the Obtaining of Struvite. Chem. Chem. Technol. 2017, 11, 463–468. https://doi.org/10.23939/chcht11.04.463
[12] Malovanyy, M.; Moroz, O.; Popovich, V.; Kopiy, M.; Tymchuk, I.; Sereda, A.; Krusir, G. Soloviy, Ch. The Perspective of Using the «Open Biological Conveyor» Method for Purifying Landfill Filtrates. Environ. Nanotechnol. Monit. Manage. 2021, 16, 100611. https://doi.org/10.1016/j.enmm.2021.100611
[13] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Zhuk, V.; Masikevych, A.; Synelnikov, S. Innovative Creation Technologies for the Growth Substrate Based on the Man-Made Waste - Perspective Way for Ukraine to Ensure Biological Reclamation of Waste Dumps and Quarries. Int. J. Foresight Innov. Policy 2020, 14, 248–263. https://doi.org/10.1504/IJFIP.2020.111239
[14] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Chornomaz, N.; Popovych, O.; Grechanik, R.; Symak, D. Review of the Global Experience in Reclamation of Disturbed Lands. Inzynieria Ekologiczna 2021, 22, 24–30. https://doi.org/10.12912/27197050/132097
[15] Orlovskyi, V.; Malovanyy, M.; Biletskyi, V., Sokur, M. Physico-Chemical Peculiarities of Weighted Thermostable Plugging Materials Hydration. Chem. Chem. Technol. 2021, 15, 599–607. https://doi.org/10.23939/chcht15.04.599
[16] El Bitouri, Y.; Azéma, N. Contribution of Turbidimetry on the Characterization of Cement Pastes Bleeding. Adv. Cem. Res. 2023, 35, 180–190. https://doi.org/10.1680/jadcr.22.00040
[17] Colombo, A.; Geiker, M.R.; Justnes, H.; Lauten, R.A.; De Weerdt, K. On the Effect of Calcium Lignosulfonate on the Rheology and Setting Time of Cement Paste. Cem. Concr. Res. 2017, 100, 435–444. https://doi.org/10.1016/j.cemconres.2017.06.009
[18] Barneoud-Chapelier, A.; Le Saout, G.; Azéma, N.; El Bitouri, Y. Effect of Polycarboxylate Superplasticizer on Hydration and Properties of Belite ye’elimite Ferrite Cement Paste. Constr. Build. Mater. 2022, 322, 126483. https://doi.org/10.1016/j.conbuildmat.2022.126483
[19] Orlovskyi, V.M. Tamponing materials that expand during hardening; POLTNTU, 2015.
[20] Jiao, D.; Shi, C.; De Schutter, G. Magneto-Responsive Structural Build-Up of Highly Flowable Cementitious Paste in the Presence of PCE Superplasticizer. Constr. Build. Mater. 2022, 327, 126925. https://doi.org/10.1016/j.conbuildmat.2022.126925
[21] Duan, Z.; Deng, Q.; Liang, C.; Ma, Z.; Wu, H. Upcycling of Recycled Plastic Fiber for Sustainable Cementitious Composites: A Critical Review and New Perspective. Cem. Concr. Compos. 2023, 142, 105192. https://doi.org/10.1016/j.cemconcomp.2023.105192
[22] Zhang, Z.; Li, S.; Lian, X.-Y. An Overview of Genus Aesculus L.: Ethnobotany, Phytochemistry, and Pharmacological Activities. Pharmaceutical Crops 2010, 1, 24–51. https://doi.org/10.2174/2210290601001010024
[23] Zimenkovskyi, B.S.; Muzychenko, V.A.; Nizhenkovska, I.V.; Syrova, H.O. Biological and bioorganic chemistry: in 2 books; Medicine, 2022.
[24] Ukrainczyk, N.; Thiedeitz, M.; Kränkel, T.; Koenders, E.; Gehlen, C. Modeling SAOS Yield Stress of Cement Suspensions: Microstructure-Based Computational Approach. Materials 2020, 13, 2769. https://doi.org/10.3390/ma13122769
[25] Orlovskyi, V.M.; Biletskyi, V.S.; Desna; N.A. Investigation of Dolomite-Ash Grouting Mixtures for Cementing Oil and Gas Wells. Pet. Coal 2023, 65, 581–590.
[26] Reiner, M. Advanced Rheology; H. K. Lewis, 1971.
[27] Krykh, H.; Matiko, H.; Sadovska, L. Evaluation of Influence of Wall Slip on Measurement of Rheological Parameters by Means of a Hydrodynamic Measuring System. Energy Engineering and Control Systems 2015, 1, 139-146.
[28] Myslyuk, M.; Salyzhyn, Yu. The Evaluation of Rheological parameters of non-Newtonian Fluids by Rotational Viscosimetry. Applied Rheology 2012, 22, 323811–323817.
[29] Zhang, Z.; Jia, Z.; Shi, J.; Jiang, Y.; Banthia, N.; Zhang, Y. Clarifying and Quantifying the Driving Force for the Evolution of Static Yield Stress of Cement Pastes. Cem. Concr. Res. 2023, 167, 107129. https://doi.org/10.1016/j.cemconres.2023.107129
[30] Ksionshkevich, L.M.; Krantovska, O.M.; Danylenko, A.V. The influence of microsilica and mechanical activation on the effective viscosity of cement suspensions. Budivelni materialy, konstruktsii ta sporudy 2015, 157, 44–48. https://doi.org/10.18664/1994-7852.157.2015.61387