This study assesses the hydrochemical dynamics of the Rika and Tereblia Rivers in Ukraine to evaluate water quality trends. Key water quality parameters, including biological oxygen demand, dissolved oxygen, total suspended solids, ammonium, nitrate, nitrite, phosphate, and sulphate, were analysed over a 10-year monitoring period. Statistical tools, such as Pearson correlation and regression analysis, were applied to determine relationships among these parameters and identify pollution sources. Results show that nutrient loading from agricultural activities, natural processes, erosion, and occasional industrial discharge contribute to water quality variability, impacting dissolved oxygen levels and increasing the risk of eutrophication. The results underscore the need for integrated water management practices to mitigate nutrient and organic matter influx and maintain the ecological health of these river systems.
1. Behmel, S., Damour, M., Ludwig, R., & Rodriguez, M. J. (2016). Water quality monitoring strategies — A review and future perspectives. Science of the Total Environment, 571, 1312–1329. doi: https://doi.org/10.1016/j.scitotenv.2016.06.235
2. Chen, Z., Zhao, Y., Liang, N., Yao, Y., Zhao, Y., & Liu, T. (2024). Pollution, cumulative ecological risk and source apportionment of heavy metals in water bodies and river sediments near the Luanchuan molybdenum mining area in the Xiaoqinling Mountains, China. Marine Pollution Bulletin, 205, 116621. doi: https://doi.org/10.1016/J.MARPOLBUL.2024.116621
3. Durkowski, T., & Jarnuszewski, G. (2015). Changes in Quality of Surface and Ground Waters during Implementation of Nitrates Directive in Selected Agricultural River Basin of Western Pomerania. Inżynieria Ekologiczna, 43, 122–130. doi: https://doi.org/10.12912/23920629/58913
4. Dzhumelia, E., & Spodaryk, O. (2022). The Possibility of Post-industrial Landscapes Reclamation Based on the Study of Soil Quality Indicators and Variance Analysis. 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT), 369–372. doi: https://doi.org/10.1109/CSIT56902.2022.10000800
5. Fisher, B., Turner, R. K., & Morling, P. (2009). Defining and classifying ecosystem services for decision making. Ecological Economics, 68(3), 643–653. doi: https://doi.org/10.1016/j.ecolecon.2008.09.014
6. Gopchak, I., Kalko, A., Basiuk, T., Pinchuk, O., Gerasimov, I., Yaromenko, O., & Shkirynets, V. (2020). Assessment of surface water pollution in Western Bug River within the cross-border section of Ukraine. Journal of Water and Land Development, 97–104. doi: https://doi.org/10.24425/jwld.2020.134201
7. Kale, A., Bandela, N., Kulkarni, J., Sahoo, S. K., & Kumar, A. (2021). Hydrogeochemistry and multivariate statistical analysis of groundwater quality of hard rock aquifers from Deccan trap basalt in Western India. Environmental Earth Sciences, 80(7), 288. doi: https://doi.org/10.1007/s12665-021-09586-7
8. Kieu, L. D., & Quoc, P. N. (2024). Spatial and Temporal Analysis of Surface Water Pollution Indices Using Statistical Methods. Civil Engineering Journal, 10(6), 1828–1841. doi: https://doi.org/10.28991/CEJ-2024-010-06-07
9. Kothari, V., Vij, S., Sharma, S., & Gupta, N. (2021). Correlation of various water quality parameters and water quality index of districts of Uttarakhand. Environmental and Sustainability Indicators, 9, 100093. doi: https://doi.org/10.1016/j.indic.2020.100093
10. Lenart-Boroń, A., Boroń, P., Kulik, K., Prajsnar, J., Żelazny, M., & Chmiel, M. J. (2022). Anthropogenic pollution gradient along a mountain river affects bacterial community composition and genera with potential pathogenic species. Scientific Reports, 12(1), 18140. doi: https://doi.org/10.1038/s41598-022-22642-x
11. Matovelle, C., Quinteros, M., Quinteros, K. S., & Jaramillo, K. (2024). Water quality assessment methods of the highland Andean rivers: A scoping systematic review. Heliyon, 10(9), e30552. doi: https://doi.org/10.1016/J.HELIYON.2024.E30552
12. Nayak, J., Singh, R., & Ganguly, R. (2024). Assessment of Water Quality in Terms of the Water Quality Index. In A. K. Yadav, K. Yadav, & V. P. Singh (Eds.), Integrated Management of Water Resources in India: A Computational Approach (Vol. 129, pp. 105–120). Springer Nature Switzerland. doi: https://doi.org/10.1007/978-3-031-62079-9_6
13. Nguyen, T. G., & Huynh, T. H. N. (2022). Assessment of surface water quality and monitoring in southern Vietnam using multicriteria statistical approaches. Sustainable Environment Research, 32(1). doi: https://doi.org/10.1186/S42834-022-00133-Y/TABLES/5
14. Olatinwo, S. O., & Joubert, T.-H. (2024). Water Quality Assessment Tool for On-Site Water Quality Monitoring. IEEE Sensors Journal, 24(10), 16450–16466. doi: https://doi.org/10.1109/JSEN.2024.3383887
15. Pandey, M. S. M. , & Umamahesh, N. V. (2024). Predicting total upland sediment yield using regression and machine learning models for improved land management and water conservation. Journal of Hydroinformatics, 26(8), 2045–2058. doi: https://doi.org/10.2166/hydro.2024.159
16. Phan, C. N., Strużyński, A., & Kowalik, T. (2023). Correlation Between Hydrochemical Component of Surface Water and Groundwater in Nida Valley, Poland. Journal of Ecological Engineering, 24(12), 167–177. doi: https://doi.org/10.12911/22998993/172424
17. Phan, C. N., Strużyński, A., & Kowalik, T. (2024). Changes in Physicochemical Indicators of Water Resulting from River Activities. Case Study in Nida Valley, Poland. Journal of Ecological Engineering, 25(3), 182–194. doi: https://doi.org/10.12911/22998993/177926
18. Sánchez, E., Colmenarejo, M. F., Vicente, J., Rubio, A., García, M. G., Travieso, L., & Borja, R. (2007). Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecological Indicators, 7(2), 315–328. doi: https://doi.org/10.1016/j.ecolind.2006.02.005
19. Yu, Z., Chen, X., & Wu, J. (2022). Calibrating a Hydrological Model in an Ungauged Mountain Basin with the Budyko Framework. Water, 14(19), 3112. doi: https://doi.org/10.3390/w14193112
20. Zhang, J., Wang, M., Ren, K., Yan, K., Liang, Y., Yuan, H., Yang, L., & Ren, Y. (2023). The relationship between mountain wetland health and water quality: A case study of the upper Hanjiang River Basin, China. Journal of Environmental Management, 346, 118998. doi: https://doi.org/10.1016/J.JENVMAN.2023.118998
21. Zhao, X., Wu, L., Dong, Z., Zhang, Z., Wu, K., Wei, A., & Wang, Y. (2024). Hydrochemical Characteristics and Controlling Factors of the Mingyong River Water of the Meili Snow Mountains, China. Sustainability 2024, Vol. 16, Page 6174, 16(14), 6174. doi: https://doi.org/10.3390/SU16146174
22. Zhou, J., Xiang, J., Zhu, G., Lei, L., Cao, J., Shi, W., Wei, W., Huang, M., & Feng, W. (2019). Spatiotemporal hydrochemical variations in river water in the Qilian Mountains and their sources: a case study of the Binggou River Basin. Journal of Water, Sanitation and Hygiene for Development, 9(4), 731–742. doi: https://doi.org/10.2166/WASHDEV.2019.049