Epilepsy is a neurological condition affecting millions worldwide. It is characterised by recurrent seizures. Electroencephalography remains one of the important investigations into the diagnosis and management of epilepsy, imaging electrical activities of the brain to outline patterns that precede seizures. Mathematical modeling of seizure patterns requires identifying specific antecedent features of seizures in EEG recordings. Better understanding of such patterns could contribute to better management and improvement in the quality of life for persons living with the condition. The research further proposes a new mathematical framework wherein simple signals from EEG can be imagined as an analog of primes, drawing their inspiration from number-theoretical and linear algebraic concepts. It is based on the definition of the GCD for EEG signal square matrices and a theorem that will prove the existence of infinitely many elementary EEG signals. The approach described below transforms the EEG data into square matrices and, by applying algebraic techniques, allows a systematic analysis of seizure activity. The results suggest that this framework provides a structured method for EEG signal processing, offering potential applications in seizure analysis and related neurological studies.
- Falco-Walter J. Epilepsy–definition, classification, pathophysiology, and epidemiology. Seminars in Neurology. 40 (06), 617–623 (2020).
- Saminu S., Xu G., Shuai Z., Abd El Kader I., Jabire A. H., Ahmed Y. K., Karaye I. A., Ahmad I. S. A Recent Investigation on Detection and Classification of Epileptic Seizure Techniques Using EEG Signal. Brain Sciences. 11 (5), 668 (2021).
- Zhou J., Ye J., Zhang X., Li C., Tan X. EEG Signal Analysis Methods and Their Applications. Zhongguo yi liao qi xie za zhi = Chinese journal of medical instrumentation. 44 (2), 122–126 (2020).
- Abiyev R., Arslan M., Bush Idoko J., Sekeroglu B., Ilhan A. Identification of Epileptic EEG Signals Using Convolutional Neural Networks. Applied Sciences. 10 (12), 4089 (2020).
- Gao Y., Gao B., Chen Q., Liu J., Zhang Y. Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification. Frontiers in Neurology. 11, 375 (2020).
- Rashed-Al-Mahfuz M., Moni M. A., Uddin S., Alyami S. A., Summers M. A., Eapen V. A Deep Convolutional Neural Network Method to Detect Seizures and Characteristic Frequencies Using Epileptic Electroencephalogram (EEG) Data. IEEE Journal of Translational Engineering in Health and Medicine. 9, 1–12 (2021).
- Iešmantas T., Alzbutas R. Convolutional neural network for detection and classification of seizures in clinical data. Medical & Biological Engineering & Computing. 58 (9), 1919–1932 (2020).
- Bongiorni L., Balbinot A. Evaluation of recurrent neural networks as epileptic seizure predictor. Array. 8, 100038 (2020).
- Verma A., Janghel R. R. Epileptic Seizure Detection Using Deep Recurrent Neural Networks in EEG Signals. Advances in Biomedical Engineering and Technology. 189–198 (2021).
- Tuncer E., Doğru Bolat E. Classification of epileptic seizures from electroencephalogram (EEG) data using bidirectional short-term memory (Bi-LSTM) network architecture. Biomedical Signal Processing and Control. 73, 103462 (2022).
- Ahmad T., Ahmad R. S., Liau L. Y., Zakaria F., Wan Eny Zarina W. A. R. Homeomorphisms of fuzzy topographic topological mapping (FTTM). Matematika. 21, 35–42 (2005).
- Mukaram M. Z., Ahmad T., Alias N., Shukor N. A., Mustapha F. Extended Graph of the Fuzzy Topographic Topological Mapping Model. Symmetry. 13 (11), 2203 (2021).
- Shukor N. A., Ahmad T., Idris A., Awang S. R., Mukaram M. Z., Alias N. Extended Graph of Fuzzy Topographic Topological Mapping Model: $G_0^4(FTTM_n^4)$. Symmetry. 14 (12), 2645 (2022).
- Binjadhnan F. A. M., Ahmad T. EEG signals during epileptic seizure as a semigroup of upper triangular matrices. American Journal of Applied Sciences. 7 (4), 540–544 (2010).
- Binjadhnan F. A. M. Krohn–Rhodes Decomposition for Electronecephalgoraphy Signals During Epileptic Seizure. Ph.D. thesis, Universiti Teknologi Malaysia (2011).
- Ahmad Fuad A. A., Ahmad T. Decomposing the Krohn–Rhodes Form of Electroencephalography (EEG) Signals Using Jordan–Chevalley Decomposition Technique. Axioms. 10 (1), 10 (2021).
- Ahmad Fuad A. A., Ahmad T. Ordering of Transformed Recorded Electroencephalography (EEG) Signals by a Novel Precede Operator. Journal of Mathematics. 2021 (1), 6651445 (2021).
- Ahmad Fuad A. A., Ahmad T., Mohamad Nor N. A. Elementary components of electroencephalography signals viewed as prime numbers. Journal of Physics: Conference Series. 1988 (1), 012073 (2021).
- Rosen K. H. Elementary Number Theory. Pearson, sixth edition (2011).
- Subramaniyam N. P., Väisänen O., Malmivuo J. Regularization methods for inverse EEG problems. Chemnitz symposium on inverse problems. 23–24.9.2010, Chemnitz, Germany, 2010 (2010).
- Barata J. C. A., Hussein M. S. The Moore–Penrose Pseudoinverse: A Tutorial Review of the Theory. Brazilian Journal of Physics. 42 (1), 146–165 (2012).
- Rashid M., Sulaiman N., Abdul Majeed A. P. P., Musa R. M., Ab Nasir A. F., Bari B. S., Khatun S. Current status, challenges, and possible solutions of EEG-based brain-Computer Interface: A comprehensive review. Frontiers in Neurorobotics. 14, 25 (2020).
- Chaddad A., Wu Y., Kateb R., Bouridane A. Electroencephalography Signal Processing: A Comprehensive Review and Analysis of Methods and Techniques. Sensors. 23 (14), 6434 (2023).
- Zhang H., Zhou Q.-Q., Chen H., Hu X.-Q., Li W.-G., Bai Y., Han J.-X., Wang Y., Liang Z.-H., Chen D., Cong F.-Y., Yan J.-Q., Li X.-L. The applied principles of EEG analysis methods in neuroscience and clinical neurology. Military Medical Research. 10 (1), 67 (2023).
- Hyvärinen A., Oja E. Independent component analysis: algorithms and applications. Neural Networks. 13 (4–5), 411–430 (2000).
- Wisniewski M. G., Joyner C. N., Zakrzewski A. C., Makeig S. Finding tau rhythms in EEG: An independent component analysis approach. Human Brain Mapping. 45 (2), e26572 (2024).
- Joseph E. R., Jakir H., Thangavel B., Nor A., Lim T. L., Mariathangam P. R. Tool-Emitted Sound Signal Decomposition Using Wavelet and Empirical Mode Decomposition Techniques – A Comparison. Symmetry. 16 (9), 1223 (2024).
- Singh A. K., Krishnan S. Trends in EEG signal feature extraction applications. Frontiers in Artificial Intelligence. 5, 1072801 (2023).
- Mannan M. M. N., Kamran M. A., Jeong M. Y. Identification and Removal of Physiological Artifacts From Electroencephalogram Signals: A Review. IEEE Access. 6, 30630–30652 (2018).
- Özkahraman A., Ölmez T., Dokur Z. Determination of the common electrodes for users and increasing the classification accuracy of motor imagery EEG. Neural Computing and Applications. 37 (6), 5057–5076 (2025).
- Halidou A., Mohamadou Y., Ari A. A. A., Zacko E. J. G. Review of wavelet denoising algorithms. Multimedia Tools and Applications. 82 (27), 41539–41569 (2023).
- Yadav S., Saha S. K., Kar R. A Metaheuristic Approach Based Adaptive Filter Design for EEG Noise Mitigation Application. 2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T). 139–144 (2024).
- Karlsson L., Fallenius E., Bergeling C., Bernhardsson B. Tensor decomposition of EEG signals for transfer learning applications. Brain-Computer Interfaces. 11 (4), 178–192 (2024).