RESEARCH ON THE EFFECT OF HUMIC SUBSTANCES-BASED PREPARATIONS IN PROMOTING SOIL BIODEGRADATION PROCESSES

The paper presents an analysis of the market of fertilizers and organic additives that promote the biodegradation of herbicide residues in the soil and ensure stable growth and development of agricultural crops. The work also presents studies of the action of biostimulants based on humic substances in promoting the activation of plant defense mechanisms when combating stress in conditions unfavorable for growth. To study the effect of such biofertilizers on the growth and development of cereal crops under stressful conditions of exposure to glyphosate, the phyto-indicator Sorghum bicolor subsp. Drummondii was used, as well as all known types of fertilizers based on humic substances. These include liquid organic experimental fertilizers based on humic acids with an increased composition of fulvic acids, as well as the more popular potassium humate and inoculants based on them, which include strains of bacteria of the genus Bacillus and ascomycete fungi Trichoderma. The main research methods are experiment, comparison, and analysis.

1. Abd El-Ghany, M. F., & Attia, M. (2020). Effect of exopolysaccharide-producing bacteria and melatonin on faba bean production in saline and non-saline soil. Agronomy, 10(3), 316. doi: https://doi.org/10.3390/agronomy10030316

2. Ali, S., Akhtar, M. S., Siraj, M., & Zaman, W. (2024). Molecular communication of microbial plant biostimulants in the rhizosphere under abiotic stress conditions. International Journal of Molecular Sciences, 25(22), 12424. doi: https://doi.org/10.3390/ijms252212424

3. Alister, C., Araya, M., Cordova, A., Saavedra, T., & Kogan, M. (2020). Humic substances and their relation to pesticide sorption in eight volcanic soils. Planta Daninha, 38, e020171636. doi: https://doi.org/10.1590/s0100-83582020380100021

4. Aydin, A., Kant, C., & Turan, M. (2012). Humic acid application alleviates salinity stress of bean (Phaseolus vulgaris L.) plants by decreasing membrane leakage. African Journal of Agricultural Research, 7(7), 1073–1086. doi: https://doi.org/10.5897/AJAR10.274

5. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266. doi: https://doi.org/10.1146/annurev.arplant.57.032905.105159

6 Boretska, I., Dzhura, N., & Podan, I. (2022). Impact of oil contamination and humates on the growth of Poaceae. Environmental Problems, 7(2), 62–70. doi: https://doi.org/10.23939/ep2022.02.062

7. Bravin, M. N., Michaud, A. M., Larabi, B., & Hinsinger, P. (2010). RHIZOtest: A plant-based biotest to account for rhizosphere processes when assessing copper bioavailability. Environmental Pollution, 158(10), 3330–3337. doi: https://doi.org/10.1016/j.envpol.2010.07.029

8. Canellas, L. P., Olivares, F. L., Okorokova-Façanha, A. L., Façanha, A. R., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15–27. doi: https://doi.org/10.1016/j.scienta.2015.09.013

9. Çimrin, K. M., Türkmen, Ö., Turan, M., & Tuncer, B. (2010). Phosphorus and humic acid application alleviate salinity stress of pepper seedlings. African Journal of Biotechnology, 9(36), 5845–5851.

10. Ćwieląg-Piasecka, I., Medyńska-Juraszek, A., Jerzykiewicz, M., Dębicka, M., Bekier, J., Jamroz, E., & Kawałko, D. (2018). Humic acid and biochar as specific sorbents of pesticides. Journal of Soils and Sediments, 18, 2692–2702. doi: https://doi.org/10.1007/s11368-018-1976-5

11. El-Beltagi, H. S., Al-Otaibi, H. H., Parmar, A., Ramadan, K. M. A., da Silva Lobato, A. K., & El-Mogy, M. M. (2023). Application of potassium humate and salicylic acid to mitigate salinity stress of common bean. Life, 13(2), 448. doi: https://doi.org/10.3390/life13020448

12. Hamaoui, B., Fernández-Pascual, M., Carmona, M., & Barrueco, C. (2001). Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Journal of Horticultural Research, 10(1), 55–61.

13. Ihsan, A., & Hussein, N. N. (2005). Isolation and characterization of salt-tolerant strains of Rhizobium leguminosarum bv. viciae. Journal of Applied Sciences and Environmental Management, 9(3), 77–79.

14. Liu, P. W. G., Cao, L., Huang, X., Yu, Z., & Wu, Q. (2011). Bioremediation of petroleum hydrocarbon–contaminated soil: Effects of strategies and microbial community shift. International Biodeterioration & Biodegradation, 65(6), 757–763. doi: https://doi.org/10.1016/j.ibiod.2011.09.002

15 Nedoroda, V. (2021). Analysis of petroleum biodegradation by a bacterial consortium of Bacillus amyloliquefaciens ssp. plantarum and Bacillus subtilis. Journal of Ecological Engineering, 22(3), 48–55. doi: https://doi.org/10.12911/22998993/143017

16. Nedoroda, V., Kibarov, O., & Trokhymenko, G. (2024). Analysis of the feasibility of using fertilizers based on fulvic acids in bioremediation of contaminated soil. Soil Science Annual, 75(4), 195814. doi: https://doi.org/10.37501/soilsa/195814

17. Pan, Y., Wang, Z., Yu, J., Chen, X., & Zhu, H. (2022). Root exudates and rhizosphere soil bacterial relationships of Nitraria tangutorum are linked to k-strategist bacterial community under salt stress. Frontiers in Plant Science, 13, 997292. https://doi.org/10.3389/fpls.2022.997292

18. Stanojević, A. B., Kojić, M., Lazarovits, G., Mihajlović, T., & Jevtić, M. (2023). Evaluation of the ex-situ bioremediation of petroleum hydrocarbons contaminated soil. Bioremediation Journal, 27(3), 161–170. doi: https://doi.org/10.1080/10889868.2023.2283580

19. Synelnikov, S. M., Vinnikov, I. M., Onyshchenko, V. M., & Tkachenko, V. F. (2019). Improvement of environmental safety of agricultural systems as a result of encapsulated mineral fertilizer implementation. Environmental Problems, 4(4), 222–229. doi: https://doi.org/10.23939/ep2019.04.222

20. Zhang, L., Liu, X., Li, L., & Yan, M. (2012). Integrated investigations on the adsorption mechanisms of fulvic and humic acids on three clay minerals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 413, 313–318. doi: https://doi.org/10.1016/j.colsurfa.2012.05.003