Enhanced Poverty Assessment through Advanced Analytical Models within the Malaysia MADANI Framework

This paper presents a research framework for an innovative poverty assessment methodology aligned with the Malaysia MADANI Framework's objectives of eradicating poverty and promoting inclusive economic growth.  Traditional approaches to household categorization often neglect critical demographic variables and the unequal distribution of income, leading to an incomplete understanding of poverty.  To address these limitations, the framework integrates mixture ordinal regression models with machine learning algorithms, leveraging the strengths of statistical modeling and advanced predictive analytics.  By conceptualizing a multi-layered analytical model, the proposed approach provides a more comprehensive and nuanced understanding of poverty dynamics within Malaysia's diverse socio-economic landscape.  The model aims to deliver detailed insights essential for designing effective and targeted policy interventions.  This framework is expected to overcome shortcomings of conventional methods, offering policymakers a robust and adaptable tool for poverty alleviation.  Ultimately, the research seeks to advance the Malaysia MADANI Framework's vision of inclusive growth and development.

  1. Musa M., Jemain A. A.  Exploring detrending techniques in detecting long-memory of ozone time series in Malaysia by simulation.  MODSIM 2011 – 19th International Congress on Modelling and Simulation – Sustaining Our Future: Understanding and Living with Uncertainty.  2197–2203 (2011).
  2. Lister R.  Poverty.  John Wiley & Sons (2021).
  3. World Bank. Malaysia Economic Monitor June 2022: Catching Up: Inclusive Recovery Growth for Lagging States. https://www.worldbank.org/en/country/malaysia/publication/malaysia-econo....
  4. Ariyanto K.  Literature Review: Urban Poverty in a Sociological Perspective.  Antroposen: Journal of Social Studies and Humaniora.  2 (1), 24–32 (2023).
  5. Collins M. L.  Assessing Household's Living Standards and Income Resilience at the outset of the Cost-of-Living Crisis.  Journal of the Statistical and Social Inquiry Society of Ireland.  52 (1), 48–59 (2023).
  6. Department of Statistics Malaysia (DOSM). Putrajaya, DOSM (2020).  Household Income and Basic Amenities Survey Report 2019.  https://v1.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=120&bul_id=....
  7. Hamid Abdul H.  Pengkelasan Isi Rumah Malaysia Perlu Diperhalusi Semula.  Khazanah Research Institute License: Creative Commons Attribution CC BY 30 (2020).
  8. Safari M. A. M., Masseran N., Hussain S. I.  Modeling urban household income in Malaysia using parametric approach.  Journal of Physics: Conference Series.  1988, 012090 (2021).
  9. Ministry of Finance, Malaysia. Belanjawan 2023 Malaysia MADANI: Ucapan Belanjawan (2023).
  10. Ministry of Finance, Malaysia. Sistem pangkalan data PADU perkemas pemberian bantuan kerajaan, elak pertindihan. Bernama (2023).
  11. Murphy K. P.  Probabilistic Machine Learning: Advanced Topics. MIT Press (2023).
  12. International Labour Office. World Employment Social Outlook: Trends 2019. Geneva: International Labour Office (2019).
  13. World Bank Group. World Bank Group Annual Reports 2020: Executive Summary. Washington, D.C. (2020).
  14. Malaysian Institute of Economic Research. Malaysian Economic Outlook 4th Quarter 2021 – Malaysian Institute of Economic Research (2021).  https://mier.org.my/malaysian-economic-outlook-4th-quarter-2021/.
  15. United Nations Development Programme. Annual Report 2020. New York (2020).
  16. Ministry of Education. Pelan Pembangunan Pendidikan Malaysia 2013–2025 (2018).
  17. Joint Center for Housing Studies. The State of the Nation's Housing 2021 (2021).
  18. Roosli R et al.  Habitat Magazine, Housing for All: a Better Urban Future.  Ministry of Housing and Local Government Malaysia (2020).
  19. Adee S., Lau E.  A Light Purse Is a Heavy Curse: A Systematic Review.  DLSU Business & Economics Review.  31 (2), 110–124 (2022).
  20. Sabri M. F., Mokhtar N., Ho C. S. F., Anthony M., Wijekoon R.  Effects of Gender and Income on Malaysian's Financial Capability.  Malaysian Journal of Consumer and Family Economics.  24, 124–152 (2020).
  21. Economic Planning Unit. Mid-term Review of the Eleventh Malaysia Plan (2020).
  22. Muhammad Sapri N. A., Ibrahim K., Abu Bakar M. A., Mohd Ariff N.  Ordinal Regression for Modelling the Family Well-being Among the Malaysians.  Journal of Nusantara Studies.  6 (2), 424–447 (2021).
  23. Ayyash M., Sek S. K.  Decomposing Inequality in Household Consumption Expenditure in Malaysia.  Economies.  8 (4), 83 (2020).
  24. Garza-Rodriguez J., Ayala-Diaz G. A., Coronado-Saucedo G. G., Garza-Garza E. G., Ovando-Martinez O.  Determinants of Poverty in Mexico: A Quantile Regression Analysis.  Economies.  9 (2), 60 (2021).
  25. Ambaye T. K., Tsehay A. S., Hailu A. G.  Application of Ordered Logit Model to Analyze Determinants of Rural Households Multidimensional Poverty in Western Ethiopia.  International Journal of Development and Economic Sustainability.  9 (1), 18–62 (2021).
  26. Farah M. J., Hook C. J.  Trust and the poverty trap.  Proceedings of the National Academy of Sciences of the United States of America.  114 (21), 5327 (2017).
  27. Sakthivel K. M., Vidhya G.  A New Finite Mixture of Probability Models With Application.  Reliability: Theory & Applications.  3 (74), 135–153 (2023).
  28. Domingues T. D.  Finite Mixture Models based on Scale Mixtures of Skew-Normal distributions applied to serological data (2021).
  29. De Alencar F. H. C., Matos L. A., Lachos V. H.  Finite Mixture of Censored Linear Mixed Models for Irregularly Observed Longitudinal Data.  Journal of Classification.  39 (3), 463–486 (2022).
  30. Fruhwirth-Schnatter S., Celeux G., Robert C. P.  Handbook of Mixture Analysis. New York, Chapman and Hall/CRC (2019).
  31. Agresti A.  Categorical Data Analysis.  John Wiley & Sons, Inc. (2013).
  32. Cai J.-H., Song X.-Y., Lam K.-H., Ip E. H.-S.  A mixture of generalized latent variable models for mixed mode and heterogeneous data.  Computational Statistics & Data Analysis.  55 (11), 2889–2907 (2011).
  33. Steyerberg E. W.  Overfitting and Optimism in Prediction Models.  In: Clinical Prediction Models. Statistics for Biology and Health. Springer, Cham (2019).
  34. Lu P., Wang H., Tolliver D.  Prediction of Bridge Component Ratings Using Ordinal Logistic Regression Model.  Mathematical Problems in Engineering.  2019, 9797584 (2019).
  35. Lyaqini S., Nachaoui M.  Diabetes prediction using an improved machine learning approach.  Mathematical Modeling and Computing.  8 (4), 726–735 (2021).