Розробка мембран на основі полівініліденфториду для літієвих акумуляторів

2025;
: cc. 270 - 276
1
V. I. Vernadsky Institute of General and Inorganic Chemistry NAS Ukraine
2
V. I. Vernadsky Institute of General and Inorganic Chemistry NAS Ukraine
3
Kyiv National University of Technologies and Design,Ukraine
4
Kyiv National University of Technologies and Design, Ukraine
5
Joint Department of Electrochemical Energy Systems NAS of Ukraine
6
V. I. Vernadsky Institute of General and Inorganic Chemistry NAS Ukraine

Досліджено два методи отримання літій-провідних полімерних плівок на основі полівініліденфториду (ПВДФ): насичення діелектричної плівки ПВДФ літій-провідним розчином і введення літій-провідного розчину в розчин ПВДФ з подальшим виготовленням літій-провідної плівки. Проведено комплекс електрофізичних досліджень властивостей запропонованого гель-полімерного електроліту в широкому температурному (20-70 ℃) і частотному (0,1 Гц–32 МГц) діапазонах. Показано, що макети літій-іонних акумуляторів, побудовані з використанням розробленої мембрани, демонструють кращі характеристики та вищу стабільність упродовж заряд/розрядного циклування, ніж елементи з комерційним сепаратором Celgard 2400.

  1. [1] Chen, W.; Liang, J.; Yang, Z. Li, G. A Review of Lithium-Ion Battery for Electric Vehicle Applications and Beyond. Energy Procedia 2019, 158, 4363–4368. https://doi.org/10.1016/j.egypro.2019.01.783
  2. [2] Mukbaniani, O.; Aneli, J.; Plonska-Brzezinska, M.; Markarashvili, E.; Tatrishvili, T. Interpenetrating Network on the Basis of Methylcyclotetrasiloxane Matrix. Chem. Chem. Technol. 2019, 13, 64–70. https://doi.org/10.23939/chcht13.01.064
  3. [3] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E. Solid Polymer Electrolyte Membranes on the Basis of Fluorosiloxane Matrix. Chem. Chem. Technol. 2021, 15, 198–204. https://doi.org/10.23939/chcht15.02.198
  4. [4] Rollo-Walker, G.; Malic, N.; Wang, X.; Chiefari, J.; Forsyth, M. Development and Progression of Polymer Electrolytes for Batteries: Influence of Structure and Chemistry. Polymers 2021, 13, 4127. https://doi.org/10.3390/polym13234127
  5. [5] Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini S.; Reinhart, G. All-Solid-State Lithium-Ion and Lithium Metal Batteries-Paving the Way to Large- Scale Production. J. Power Sources 2018, 382, 160–175. https://doi.org/10.1016/j.jpowsour.2018.02.062
  6. [6] Cao, D.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.; Zhu, H. Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations. Matter 2020, 3, 57–94. https://doi.org/10.1016/j.matt.2020.03.015
  7. [7] Wang, J.; Ge, B.; Li, H.; Yang, M.; Wang, J.; Liu, D.; Fernandez, C.; Chen, X.; Peng, Q. Challenges and Progresses of Lithium-Metal Batteries. J. Chem. Eng. 2021, 420, 129739. https://doi.org/10.1016/j.cej.2021.129739
  8. [8] Jiang, Y.; Yan, X.; Ma, Z.; Mei, P.; Xiao, W.; You, Q.; Zhang, Y. Development of the PEO Based Solid Polymer Electrolytes for All-Solid State Lithium Ion Batteries. Polymers 2018, 10, 1237. https://doi.org/10.3390/polym10111237
  9. [9] Wang, X.; Hao, X.; Xia, Y.; Liang, Y.; Xia, X.; Tu, J. A . Polyacrylonitrile (PAN)-Based Double-Layer Multifunctional Gel Polymer Electrolyte for Lithium-Sulfur Batteries. J. Membr. Sci. 2019, 582, 37–47. https://doi.org/10.1016/j.memsci.2019.03.048
  10. [10] Hosseinioun, A.; Nürnberg, P.; Schönhoff, M.; Diddens, D.; Paillard, E. Improved Lithium Ion Dynamics in Crosslinked PMMA Gel Polymer Electrolyte. RSC Advances 2019, 9, 27574–27582. https://doi.org/10.1039/C9RA05917B
  11. [11] Sashmitha, K.; Rani, M. U. A Comprehensive Review of Polymer Electrolyte for Lithium-Ion Battery. Polym. Bull. 2023, 80, 89–135. https://doi.org/10.1007/s00289-021-04008-x
  12. [12] Barbosa, J. C.; Correia, D. M.; Fernández, E. M.; Fidalgo- Marijuan, A.; Barandika, G.; Gonçalves, R.; Ferdov, S.; de Zea Bermudez, V.; Costa, C. M.; Lanceros-Mendez, S. High- Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoride-co- hexafluoropropylene) Combining Ionic Liquid and Zeolite. ACS Appl. Mater. Interfaces 2021, 13, 48889–48900. https://doi.org/10.1021/acsami.1c15209
  13. [13] Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y. Progress in Electrolytes for Rechargeable Li-based Batteries and Beyond. Green Energy Environ. 2016, 1, 18–42. https://doi.org/10.1016/j.gee.2016.04.006
  14. [14] Prasanth, R.; Shubha, N.; Hng, H. H.; Srinivasan, M. Effect of Poly(Ethylene oxide) on Ionic Conductivity and Electrochemical Properties of Poly (Vinylidenefluoride) Based Polymer Gel Electrolytes Prepared by Electrospinning for Lithium Ion Batteries. J. Power Sources 2014, 245, 283–291. https://doi.org/10.1016/j.jpowsour.2013.05.178
  15. [15] Neuhaus, J.; von Harbou, E.; Hasse, H. Physico-chemical Properties of Solutions of Lithium bis (Fluorosulfonyl) Imide (LiFSI) in Dimethyl Carbonate, Ethylene Carbonate, and Propylene Carbonate. J. Power Sources 2018, 394, 148–159. https://doi.org/10.1016/j.jpowsour.2018.05.038
  16. [16] Uchida, S.; Kiyobayashi, T. What Differentiates the Transport Properties of Lithium Electrolyte in Ethylene Carbonate Mixed with Diethylcarbonate from Those Mixed with Dimethylcarbonate? J. Power Sources 2021, 511, 230423. https://doi.org/10.1016/j.jpowsour.2021.230423
  17. [17] Hall, D. S.; Self, J.; Dahn, J. R. Dielectric Constants for Quantum Chemistry and Li-Ion Batteries: Solvent Blends of Ethylene Carbonate and Ethyl Methyl Carbonate. J. Phys. Chem. C 2015, 119, 22322–22330. https://doi.org/10.1021/acs.jpcc.5b06022
  18. [18] Petibon, R.; Harlow, J.; Le, D. B.; Dahn, J. R. The Use of Ethyl Acetate and Methyl Propanoate in Combination with Vinylene Carbonate as Ethylene Carbonate-Free Solvent Blends for Electrolytes in Li-Ion Batteries. Electrochim. Acta 2015, 154, 227–234. https://doi.org/10.1016/j.electacta.2014.12.084
  19. [19] Chen, R.; Bresser, D.; Saraf, M.; Gerlach, P.; Balducci, A.; Kunz, S.; Schröder, D.; Passerini S.; Chen, J. A Comparative Review of Electrolytes for Organic‐Material‐Based Energy‐Storage Devices Employing Solid Electrodes and Redox Fluids. ChemSusChem. 2020, 13, 2205–2219. https://doi.org/10.1002%2Fcssc.201903382
  20. [20] Daubert, J. S.; Afroz, T.; Borodin, O.; Seo, D. M.; Boyle, P. D.; Henderson, W. A. Solvate Structures and Computational/Spectroscopic Characterization of LiClO4 Electrolytes. J. Phys. Chem. C. 2022, 126, 14399–14412. https://doi.org/10.1021/acs.jpcc.2c03805
  21. [21] Kamal, F. Z.; Hameed, N. J.; Salim, E. T.; Gopinath, S. C. Review on the Physicl Properties of Polyethylene Oxide. Engineering and Technology Journal 2023, 41, 1220–1231. https://doi.org/10.30684/etj.2023.139937.1447
  22. [22] Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H.-K. Lithium- Ion Conducting Electrolyte Salts for Lithium Batteries. Chem. Eur. J. 2011, 17, 14326–14346. https://doi.org/10.1002/chem.201101486
  23. [23] Marom, R.; Haik, O.; Aurbach, D.; Halalay, I. C. Revisiting LiClO4 as an Electrolyte for Rechargeable Lithium-Ion Batteries.J. Electrochem. Soc. 2010, 157, A972–A983.https://doi.org/10.1149/1.3447750
  24. [24] Mauger, A.; Julien, C. M.; Paolella, A.; Armand, M.; Zaghib, K. A Comprehensive Review of Lithium Salts and Beyond for Rechargeable Batteries: Progress and Perspectives. Mater. Sci. Eng. R. Rep. 2018, 134, 1–21. https://doi.org/10.1016/j.mser.2018.07.001
  25. [25] Shi, X.; Ma, N.; Wu, Y.; Lu, Y.; Xiao, Q.; Li, Z.; Lei, G. Fabrication and Electrochemical Properties of LATP / PVDF Composite Electrolytes for Rechargeable Lithium-Ion Battery. Solid State Ion. 2018, 325, 112–119. https://doi.org/10.1016/j.ssi.2018.08.010
  26. [26] Niitani, T.; Shimada, M.; Kawamura, K.; Dokko, K.; Rho, Y.-H.; Kanamura, K. Synthesis of Li +  Ion Conductive PEO-PSt Block Copolymer Electrolyte with Microphase Separation Structure. Electrochem. Solid-State Lett. 2005, 8, A385–A388. https://doi.org/10.1149/1.1940491
  27. [27] Lisovskyi, I. V.; Solopan, S. O.; Belous, A. G.; Khomenko, V. G.; Barsukov, V. Z. An Effective Modification of LiNi0.6Co0.2Mn0.2O2 with Li1.3Al0.3Ti1.7(PO4)3 as a High- Performance Cathode Material for Li-ion Batteries. J. Appl. Electrochem. 2022, 52, 1701–1713. https://doi.org/10.1007/s10800- 022-01736-4
  28. [28] Rahimpour, A.; Madaeni, S. S.; Zereshki, S.; Mansourpanah, Y. Preparation and Characterization of Modified Nano-Porous PVDF Membrane with High Antifouling Property Using UV Photo- Grafting. Appl. Surf. Sci. 2009, 255, 7455–7461. https://doi.org/10.1016/j.apsusc.2009.04.021
  29. [29] Gu, S.; He, G.; Wu, X.; Hu, Z.; Wang, L.; Xiao, G.; Peng, L. Preparation and Characterization of poly(Vinylidene fluoride) / sulfonated poly(Phthalazinone ether sulfone ketone) Blends for Proton Exchange Membrane. J. Appl. Polym. Sci. 2010, 116, 852– 860. https://doi.org/10.1002/app.31547