Досліджено два методи отримання літій-провідних полімерних плівок на основі полівініліденфториду (ПВДФ): насичення діелектричної плівки ПВДФ літій-провідним розчином і введення літій-провідного розчину в розчин ПВДФ з подальшим виготовленням літій-провідної плівки. Проведено комплекс електрофізичних досліджень властивостей запропонованого гель-полімерного електроліту в широкому температурному (20-70 ℃) і частотному (0,1 Гц–32 МГц) діапазонах. Показано, що макети літій-іонних акумуляторів, побудовані з використанням розробленої мембрани, демонструють кращі характеристики та вищу стабільність упродовж заряд/розрядного циклування, ніж елементи з комерційним сепаратором Celgard 2400.
- [1] Chen, W.; Liang, J.; Yang, Z. Li, G. A Review of Lithium-Ion Battery for Electric Vehicle Applications and Beyond. Energy Procedia 2019, 158, 4363–4368. https://doi.org/10.1016/j.egypro.2019.01.783
- [2] Mukbaniani, O.; Aneli, J.; Plonska-Brzezinska, M.; Markarashvili, E.; Tatrishvili, T. Interpenetrating Network on the Basis of Methylcyclotetrasiloxane Matrix. Chem. Chem. Technol. 2019, 13, 64–70. https://doi.org/10.23939/chcht13.01.064
- [3] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E. Solid Polymer Electrolyte Membranes on the Basis of Fluorosiloxane Matrix. Chem. Chem. Technol. 2021, 15, 198–204. https://doi.org/10.23939/chcht15.02.198
- [4] Rollo-Walker, G.; Malic, N.; Wang, X.; Chiefari, J.; Forsyth, M. Development and Progression of Polymer Electrolytes for Batteries: Influence of Structure and Chemistry. Polymers 2021, 13, 4127. https://doi.org/10.3390/polym13234127
- [5] Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini S.; Reinhart, G. All-Solid-State Lithium-Ion and Lithium Metal Batteries-Paving the Way to Large- Scale Production. J. Power Sources 2018, 382, 160–175. https://doi.org/10.1016/j.jpowsour.2018.02.062
- [6] Cao, D.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.; Zhu, H. Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations. Matter 2020, 3, 57–94. https://doi.org/10.1016/j.matt.2020.03.015
- [7] Wang, J.; Ge, B.; Li, H.; Yang, M.; Wang, J.; Liu, D.; Fernandez, C.; Chen, X.; Peng, Q. Challenges and Progresses of Lithium-Metal Batteries. J. Chem. Eng. 2021, 420, 129739. https://doi.org/10.1016/j.cej.2021.129739
- [8] Jiang, Y.; Yan, X.; Ma, Z.; Mei, P.; Xiao, W.; You, Q.; Zhang, Y. Development of the PEO Based Solid Polymer Electrolytes for All-Solid State Lithium Ion Batteries. Polymers 2018, 10, 1237. https://doi.org/10.3390/polym10111237
- [9] Wang, X.; Hao, X.; Xia, Y.; Liang, Y.; Xia, X.; Tu, J. A . Polyacrylonitrile (PAN)-Based Double-Layer Multifunctional Gel Polymer Electrolyte for Lithium-Sulfur Batteries. J. Membr. Sci. 2019, 582, 37–47. https://doi.org/10.1016/j.memsci.2019.03.048
- [10] Hosseinioun, A.; Nürnberg, P.; Schönhoff, M.; Diddens, D.; Paillard, E. Improved Lithium Ion Dynamics in Crosslinked PMMA Gel Polymer Electrolyte. RSC Advances 2019, 9, 27574–27582. https://doi.org/10.1039/C9RA05917B
- [11] Sashmitha, K.; Rani, M. U. A Comprehensive Review of Polymer Electrolyte for Lithium-Ion Battery. Polym. Bull. 2023, 80, 89–135. https://doi.org/10.1007/s00289-021-04008-x
- [12] Barbosa, J. C.; Correia, D. M.; Fernández, E. M.; Fidalgo- Marijuan, A.; Barandika, G.; Gonçalves, R.; Ferdov, S.; de Zea Bermudez, V.; Costa, C. M.; Lanceros-Mendez, S. High- Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoride-co- hexafluoropropylene) Combining Ionic Liquid and Zeolite. ACS Appl. Mater. Interfaces 2021, 13, 48889–48900. https://doi.org/10.1021/acsami.1c15209
- [13] Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y. Progress in Electrolytes for Rechargeable Li-based Batteries and Beyond. Green Energy Environ. 2016, 1, 18–42. https://doi.org/10.1016/j.gee.2016.04.006
- [14] Prasanth, R.; Shubha, N.; Hng, H. H.; Srinivasan, M. Effect of Poly(Ethylene oxide) on Ionic Conductivity and Electrochemical Properties of Poly (Vinylidenefluoride) Based Polymer Gel Electrolytes Prepared by Electrospinning for Lithium Ion Batteries. J. Power Sources 2014, 245, 283–291. https://doi.org/10.1016/j.jpowsour.2013.05.178
- [15] Neuhaus, J.; von Harbou, E.; Hasse, H. Physico-chemical Properties of Solutions of Lithium bis (Fluorosulfonyl) Imide (LiFSI) in Dimethyl Carbonate, Ethylene Carbonate, and Propylene Carbonate. J. Power Sources 2018, 394, 148–159. https://doi.org/10.1016/j.jpowsour.2018.05.038
- [16] Uchida, S.; Kiyobayashi, T. What Differentiates the Transport Properties of Lithium Electrolyte in Ethylene Carbonate Mixed with Diethylcarbonate from Those Mixed with Dimethylcarbonate? J. Power Sources 2021, 511, 230423. https://doi.org/10.1016/j.jpowsour.2021.230423
- [17] Hall, D. S.; Self, J.; Dahn, J. R. Dielectric Constants for Quantum Chemistry and Li-Ion Batteries: Solvent Blends of Ethylene Carbonate and Ethyl Methyl Carbonate. J. Phys. Chem. C 2015, 119, 22322–22330. https://doi.org/10.1021/acs.jpcc.5b06022
- [18] Petibon, R.; Harlow, J.; Le, D. B.; Dahn, J. R. The Use of Ethyl Acetate and Methyl Propanoate in Combination with Vinylene Carbonate as Ethylene Carbonate-Free Solvent Blends for Electrolytes in Li-Ion Batteries. Electrochim. Acta 2015, 154, 227–234. https://doi.org/10.1016/j.electacta.2014.12.084
- [19] Chen, R.; Bresser, D.; Saraf, M.; Gerlach, P.; Balducci, A.; Kunz, S.; Schröder, D.; Passerini S.; Chen, J. A Comparative Review of Electrolytes for Organic‐Material‐Based Energy‐Storage Devices Employing Solid Electrodes and Redox Fluids. ChemSusChem. 2020, 13, 2205–2219. https://doi.org/10.1002%2Fcssc.201903382
- [20] Daubert, J. S.; Afroz, T.; Borodin, O.; Seo, D. M.; Boyle, P. D.; Henderson, W. A. Solvate Structures and Computational/Spectroscopic Characterization of LiClO4 Electrolytes. J. Phys. Chem. C. 2022, 126, 14399–14412. https://doi.org/10.1021/acs.jpcc.2c03805
- [21] Kamal, F. Z.; Hameed, N. J.; Salim, E. T.; Gopinath, S. C. Review on the Physicl Properties of Polyethylene Oxide. Engineering and Technology Journal 2023, 41, 1220–1231. https://doi.org/10.30684/etj.2023.139937.1447
- [22] Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H.-K. Lithium- Ion Conducting Electrolyte Salts for Lithium Batteries. Chem. Eur. J. 2011, 17, 14326–14346. https://doi.org/10.1002/chem.201101486
- [23] Marom, R.; Haik, O.; Aurbach, D.; Halalay, I. C. Revisiting LiClO4 as an Electrolyte for Rechargeable Lithium-Ion Batteries.J. Electrochem. Soc. 2010, 157, A972–A983.https://doi.org/10.1149/1.3447750
- [24] Mauger, A.; Julien, C. M.; Paolella, A.; Armand, M.; Zaghib, K. A Comprehensive Review of Lithium Salts and Beyond for Rechargeable Batteries: Progress and Perspectives. Mater. Sci. Eng. R. Rep. 2018, 134, 1–21. https://doi.org/10.1016/j.mser.2018.07.001
- [25] Shi, X.; Ma, N.; Wu, Y.; Lu, Y.; Xiao, Q.; Li, Z.; Lei, G. Fabrication and Electrochemical Properties of LATP / PVDF Composite Electrolytes for Rechargeable Lithium-Ion Battery. Solid State Ion. 2018, 325, 112–119. https://doi.org/10.1016/j.ssi.2018.08.010
- [26] Niitani, T.; Shimada, M.; Kawamura, K.; Dokko, K.; Rho, Y.-H.; Kanamura, K. Synthesis of Li + Ion Conductive PEO-PSt Block Copolymer Electrolyte with Microphase Separation Structure. Electrochem. Solid-State Lett. 2005, 8, A385–A388. https://doi.org/10.1149/1.1940491
- [27] Lisovskyi, I. V.; Solopan, S. O.; Belous, A. G.; Khomenko, V. G.; Barsukov, V. Z. An Effective Modification of LiNi0.6Co0.2Mn0.2O2 with Li1.3Al0.3Ti1.7(PO4)3 as a High- Performance Cathode Material for Li-ion Batteries. J. Appl. Electrochem. 2022, 52, 1701–1713. https://doi.org/10.1007/s10800- 022-01736-4
- [28] Rahimpour, A.; Madaeni, S. S.; Zereshki, S.; Mansourpanah, Y. Preparation and Characterization of Modified Nano-Porous PVDF Membrane with High Antifouling Property Using UV Photo- Grafting. Appl. Surf. Sci. 2009, 255, 7455–7461. https://doi.org/10.1016/j.apsusc.2009.04.021
- [29] Gu, S.; He, G.; Wu, X.; Hu, Z.; Wang, L.; Xiao, G.; Peng, L. Preparation and Characterization of poly(Vinylidene fluoride) / sulfonated poly(Phthalazinone ether sulfone ketone) Blends for Proton Exchange Membrane. J. Appl. Polym. Sci. 2010, 116, 852– 860. https://doi.org/10.1002/app.31547