Relationship between volatile organic compounds release, their molecular interaction, and sensory data.

This study explores the relationships of evaporation dynamics, metal oxide semiconductor (MOS) sensor analysis, sensory panel perception of essential oils, and molecular docking interactions of D-limonene, eugenol, citronellol, isoamyl acetate, and cis-3-hexen-1-ol. The VOCs showed strong correlations (Pearson r=0.96–0.98) between evaporation rate and odor intensity for D-limonene, isoamyl acetate, and cis-3-hexen-1-ol, whereas eugenol exhibited low correlations. Real-time MOS data validated these evaporation profiles. Molecular docking studies using DiffDock and Dockstring methods demonstrated differential affinities of VOCs with odorant- binding protein OBPIIa, OBPI, and CYP3A4. 

  1. Sharma, A., Kumar, R., Aier, I., Semwal, R., Tyagi, P., & Varadwaj, P. (2019). Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research. Current neuropharmacology, 17(9), 891-911. https://doi.org/10.2174/1570159X17666181206095626 https://doi.org/10.2174/1570159X17666181206095626
  2. Brattoli, M., De Gennaro, G., De Pinto, V., Demarinis Loiotile, A., Lovascio, S., & Penza, M. (2011). Odour Detection Methods: Olfactometry and Chemical Sensors. Sensors, 11(5), 5290-5322. https://doi.org/10.3390/s110505290  https://doi.org/10.3390/s110505290
  3. Wesley W Qian, Jennifer N Wei, Benjamin Sanchez-Lengeling, Brian K Lee, Yunan Luo, Marnix Vlot, Koen Dechering, Jian Peng, Richard C Gerkin, Alexander B Wiltschko (2023) Metabolic activity organizes olfactory representations eLife 12:e82502. https://doi.org/10.7554/eLife.82502 https://doi.org/10.7554/eLife.82502
  4. Genva, M., Kenne Kemene, T., Deleu, M., Lins, L., & Fauconnier, M. L. (2019). Is It Possible to Predict the Odor of a Molecule on the Basis of its Structure?. International journal of molecular sciences, 20(12), 3018. https://doi.org/10.3390/ijms20123018 https://doi.org/10.3390/ijms20123018
  5. Poeta, E., Núñez-Carmona, E., & Sberveglieri, V. (2025). A Review: Applications of MOX Sensors from Air Quality Monitoring to Biomedical Diagnosis and Agro-Food Quality Control. Journal of Sensor and Actuator Networks, 14(3), 50. https://doi.org/10.3390/jsan14030050  https://doi.org/10.3390/jsan14030050
  6. Rossi, A., Spagnoli, E., Tralli, F., Marzocchi, M., Guidi, V., & Fabbri, B. (2023). New Approach for the Detection of Sub-ppm Limonene: An Investigation through Chemoresistive Metal-Oxide Semiconductors. Sensors, 23(14), 6291. https://doi.org/10.3390/s23146291 https://doi.org/10.3390/s23146291
  7. Aisyah, Azarine & Wardoyo, Arinto & Dharmawan, Hari & Nurhuda, Muhammad & Budianto, Arif. (2021). Development of a Portable Volatile Organic Compounds Concentration Measurement System Using a CCS811 Air Quality Sensor. 1-5. https://doi.org/10.1109/ISESD53023.2021.9501642. https://doi.org/10.1109/ISESD53023.2021.9501642
  8. Corso, G., Stärk, H., Jing, B., Barzilay, R., & Jaakkola, T. (2022). Diffdock: Diffusion steps, twists, and turns for molecular docking. arXiv preprint arXiv:2210.01776.
  9. V. Blanes-Vidal, M.N. Hansen, A.P.S. Adamsen, A. Feilberg, S.O. Petersen, B.B. Jensen, Characterization of odor released during handling of swine slurry: Part I. Relationship between odorants and perceived odor concentrations, Atmospheric Environment, Volume 43, Issue 18, 2009, Pages 2997-3005, ISSN 1352-2310, https://doi.org/10.1016/j.atmosenv.2008.10.016. https://doi.org/10.1016/j.atmosenv.2008.10.016
  10. Cain, W. S., Schmidt, R., & Wolkoff, P. (2007). Olfactory detection of ozone and D-limonene: reactants in indoor spaces. Indoor air, 17(5), 337-347. https://doi.org/10.1111/j.1600-0668.2007.00476.x https://doi.org/10.1111/j.1600-0668.2007.00476.x
  11. Guth, H. (1997). Quantitation and sensory studies of character impact odorants of different white wine varieties. Journal of Agricultural and Food Chemistry, 45(8), 3027-3032. https://doi.org/10.1021/jf970280a
  12. Thiebaud N, Veloso Da Silva S, Jakob I, Sicard G, Chevalier J, et al. (2013) Odorant Metabolism Catalyzed by Olfactory Mucosal Enzymes Influences Peripheral Olfactory Responses in Rats. PLOS ONE 8(3): e59547. https://doi.org/10.1371/journal.pone.0059547 https://doi.org/10.1371/journal.pone.0059547
  13. Pavan, B., Bianchi, A., Botti, G., Ferraro, L., Valerii, M. C., Spisni, E., & Dalpiaz, A. (2023). Pharmacokinetic and Permeation Studies in Rat Brain of Natural Compounds Led to Investigate Eugenol as Direct Activator of Dopamine Release in PC12 Cells. International journal of molecular sciences, 24(2), 1800. https://doi.org/10.3390/ijms24021800 https://doi.org/10.3390/ijms24021800
  14. Moitrier, L., Belloir, C., Lalis, M., Hou, Y., Topin, J., & Briand, L. (2022). Ligand Binding Properties of Odorant-Binding Protein OBP5 from Mus musculus. Biology, 12(1), 2. https://doi.org/10.3390/biology12010002 https://doi.org/10.3390/biology12010002
  15. Castro, T. G., Silva, C., Matamá, T., & Cavaco-Paulo, A. (2021). The Structural Properties of Odorants Modulate Their Association to Human Odorant Binding Protein. Biomolecules, 11(2), 145. https://doi.org/10.3390/biom11020145 https://doi.org/10.3390/biom11020145
  16. Asakawa, M., Fukutani, Y., Savangsuksa, A. et al. Modification of the response of olfactory receptors to acetophenone by CYP1a2. Sci Rep 7, 10167 (2017). https://doi.org/10.1038/s41598-017-10862-5 https://doi.org/10.1038/s41598-017-10862-5