Granular hydrogels with high drug content for controlled release systems

 The suspension polymerization of HEMA/PVP compositions in the presence of drugs was studied. The influence of drug type and concentration on polymerization kinetics, particle size, and sorption–desorption properties was determined. A one-step synthesis method was developed for obtaining hydrogel carriers for controlled drug release. It was established that in the presence of drugs (thiotriazoline, omeprazole, isoniazid, amlodipine benzoate), it was possible to carry out suspension polymerization of HEMA compositions with PVP and obtain spherical polymer particles with sizes of 0.2-0.7 mm. 

1. Rehmat, S., Ahmad, N., Haider, M. S., & Ahmad, N. (2022). Controlled drug delivery systems based on polymers and hydrogels: Recent advances and future prospects. Polymers, 14(3), 473. https://doi.org/10.3390/polym14030473
https://doi.org/10.3390/polym14030473
2. Benoit, D. S. W., Overby, C. T., Sims Jr, K. R., & Ackun-Farmmer, M. A. (2020). 2.5.12 - Drug delivery systems; biomaterials science. In Biomaterials Science (pp. 1237-1266). Academic Press. https://doi.org/10.1016/B978-0-12-816137-1.00078-7
https://doi.org/10.1016/B978-0-12-816137-1.00078-7
3.Ermiş, E. (2022). Poly(2-hydroxyethyl methacrylate) (pHEMA) based hydrogels in biomedical applications: A review. Gels, 8(9), 578. https://doi.org/10.3390/gels8090578
https://doi.org/10.3390/gels8090578
4.Dimatteo, R., Darling, N. J., & Segura, T. (2018). In situ forming injectable hydrogels for drug delivery and wound repair. Advanced Drug Delivery Reviews, 127, 167-184. https://doi.org/10.1016/j.addr.2018.03.007
https://doi.org/10.1016/j.addr.2018.03.007
5.Bordbar‑Khiabani, A., & Gasik, M. (2022). Smart hydrogels for advanced drug delivery systems. Gels, 8(8), 509. https://doi.org/10.3390/gels8080509
https://doi.org/10.3390/gels8080509
6. Tu W, Maksym P, Kaminski K, Chat K, Adrjanowicz K. Free-radical polymerization of 2-hydroxyethyl methacrylate (HEMA) supported by a high electric field // Polymer Chemistry. - 2022. - №13 (19). - Р. 2850-2859.
https://doi.org/10.1039/D2PY00320A
7. Chou, K., Lee, S., & Han, C. (2000). Water transport in crosslinked 2-hydroxyethyl methacrylate. Polymer Engineering & Science, 40(4), 1004-1014. https://doi.org/10.1002/(SICI)1099-0488(20000301)38:5<659::AID-POLB3>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1099-0488(20000301)38:5<659::AID-POLB3>3.0.CO;2-R
8. Wang, Y., Liu, J., Zhao, X., & Li, Z. (2025). Dual-functional hCe‑pHEMA contact lenses for ocular antibiotic release, antioxidant protection, and in vivo corneal bacterial infection treatment. Journal of Hydrogel Biomaterials, 12(1), 45-59. https://doi.org/10.1016/j.jhb.2025.01.004
https://doi.org/10.1016/j.jconrel.2025.113813
9. Li, H., Zhang, T., Sun, L., & Chen, Q. (2022). Novel contact lenses embedded with drug-loaded zwitterionic nanogels for extended ophthalmic drug delivery. Nanomaterials, 11(9), 2328. https://doi.org/10.3390/nano11092328
https://doi.org/10.3390/nano11092328
10. Sharma, M. B., Abdelmohsen, H. A. M., Kap, Ö., Kilic, V., Horzum, N., Cheneler, D. P., & Hardy, J. G. (2024). Poly(2-hydroxyethyl methacrylate) hydrogel-based microneedles for bioactive release. Bioengineering (Basel), 11(7), 649. https://doi.org/10.3390/bioengineering11070649
https://doi.org/10.3390/bioengineering11070649
11. Passos, M. F., Carvalho, N. M. S., Rodrigues, A. A., Bavaresco, V. P., Jardini, A. L., Maciel, M. R. W., & Filho, R. M. (2019). PHEMA hydrogels obtained by infrared radiation for cartilage tissue engineering. International Journal of Chemical Engineering, 2019, 1-9. https://doi.org/10.1155/2019/4249581
https://doi.org/10.1155/2019/4249581
12. Skorokhoda, V., Melnyk, Y., Semenyuk, N., Ortynska, N., & Suberlyak, O. (2017). Film hydrogels on the basis of polyvinylpyrrolidone copolymers with regulated sorption-desorption characteristics. Chemistry & Chemical Technology, 11(2), 171-174. https://doi.org/10.23939/chcht11.02.171
https://doi.org/10.23939/chcht11.02.171
13. Skorokhoda, V., Semenyuk, N., & Suberliak, O. (2004). Tekhnolohichni aspekty oderzhannia sferychnykh hranul kopolimeriv hidroksietylmetakrylatu z polivinilpirolidonom. Pytannia khimii ta khimichnoi tekhnolohii, (3), 88-91.
14. Skorokhoda, V.; Semenyuk, N.; Melnyk, J.; Suberlyak, O. Hydrogels penetration and sorption properties in the substances release controlled processes. Chem.Chem.Technol. 2009, 3 (2), 117-121. https://doi.org/10.23939/chcht03.02.117
https://doi.org/10.23939/chcht03.02.117