Design and implementation of a geodetic network for monitoring the Dnister hydroelectric complex using ground-based and remote sensing methods

The aim of this work is to substantiate and practically implement a high-precision geodynamic monitoring system for the Dnister Hydroelectric Complex. This strategic facility (HPP-1, HPP-2, and PSP with an upper reservoir of 32.7 million m³) is in complex engineering-geological conditions: at the junction of tectonic plates, in a zone of faults and active karst. This creates risks of structural deformations, requiring reliable instrumental control. Methodology. A combined approach is proposed, integrating ground-based methods (GNSS, leveling) and Satellite Radar Interferometry (InSAR). Based on GIS analysis of relief and geology, a network of 8 new complex geodetic points was designed. A key feature is their equipment, which includes special corner reflectors, allowing Sentinel-1 satellites to clearly identify points even in undeveloped terrain. The installation was completed in May 2025, and the first measurement cycle using dual-frequency receivers was conducted in July. Results. A full-scale geodynamic polygon has been established. Analysis of GNSS observations revealed that the actual network accuracy exceeded the calculated value: the root mean square error is 1.2 mm in the plane and 5.6 mm in height. This allows for detecting the slightest ground displacements. Verification of corner reflectors using satellite imagery revealed a signal intensity increase of 10–12 dB, ensuring stable InSAR monitoring. Scientific novelty and practical significance lie in the implementation of an integrated methodology that combines the precision of ground measurements with the scale of spaceborne sensing. The created network ensures long-term stability control of dams and slopes, enabling timely detection of dangerous processes (landslides, subsidence) for the accident-free operation of the complex. The obtained data will serve as a baseline for future regular observations.

  1. Andritsanos, V. D., Arabatzi, O., Gianniou, M., Pagounis, V., Tziavos, I. N., Vergos, G. S., & Zacharis, E. (2016). Comparison of various GPS processing solutions toward an efficient validation of the Hellenic vertical network: The ELEVATION project. Journal of Surveying Engineering, 142(1), 04015007. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000164
  2. Blewitt, G., Lavallée, D., Clarke, P., & Nurutdinov, K. (2001). A new global mode of Earth deformation: Seasonal cycle detected. Science, 294(5550), 2342–2345. https://doi.org/10.1126/science.1065328
  3. Bodnarchuk, T. V. (2016). Vplyv Dnistrovskoho hidrovuzla na navkolyshnie pryrodne seredovyshche i formuvannia antropohennykh landshaftiv u zoni yoho vplyvu [Influence of the Dnister hydroelectric complex on the environment and the formation of anthropogenic landscapes in its zone of influence]. Molodyi vchenyi, 5, 309–314.
  4. Brusak, I., & Tretyak, K. (2020). About the phenomenon of subsidence in continental Europe in December 2019 based on the GNSS stations data. In International Conference of Young Professionals «GeoTerrace-2020». No. 1, 1-5. https://doi.org/10.3997/2214-4609.20205717
  5. Deyneko, S., Vyzhva, S., Nesterenko, H., Bernevek, A., & Ivashchenko, S. (2017). Seismoakustychnyi monitorynh stanu hruntiv Dnistrovskoho shylu (u zoni rozmishchennia napirno-statsionarnoho vuzla) [Seismoacoustic monitoring of soil conditions of the Dnister slope (in the zone of the pressure-stationary node)]. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Heolohiia, 3, 30–35.
  6. Dojchinovski, D., Dimiskovska, B., Pekevski, L., & Guoxin, W. (2012). Estimating Reservoir Induced Seismicity RIS potential: Case study – Kozjak Dam. In 15th World Conference on Earthquake Engineering.
  7. Dorosh L. I. (2021). Monitorynh tekhnohenno-nebezpechnykh obiektiv zasobamy radiolokatsiinoi interferometrii: avtoref. dys. na zdobuttia nauk. stupenia kand. tekhn. nauk: spets. 05.24.01. Lviv. 23 p., (in Ukrainian).
  8. Duma, M. (2020). Kompleksna optymizatsiia HNSS-merezh [Complex optimization of GNSS networks]. Suchasni dosiahnennia heodezychnoi nauky ta vyrobnytstva, 1, 62–68.
  9. Kopačková, V. (2019) Comparing DInSAR and PSI Techniques Employed to Sentinel-1 Data to Monitor Highway Stability: A Case Study of a Massive Dobkoviˇcky Landslide, Czech Republic. Remote Sensing. Issue: 11. https://doi.org/10.3390/rs11222670.
  10. Nesterenko, S. V., & Mishchenko, R. A. (2025). Kompleksne zastosuvannia danykh HNSS-sposterezhen i suputnykovoi radiolokatsii dlia vyznachennia dynamiky rukhiv Prydniprovskoi nyzovyny [Complex application of GNSS observation data and satellite radar for determining the dynamics of movements of the Dnieper Lowland]. Zbirnyk naukovykh prats Ukrainskoho derzhavnoho universytetu zaliznychnoho transportu, 212, 185–195. https://doi.org/10.18664/1994-7852.212.2025.336342
  11. Nesterenko, S. V., Pavlyk, V. G., & Mishchenko, R. A. (2023). Analysis of vertical movements of the permanent GNSS-station POLV on the base of satellite data and leveling. Geodesy, Cartography and Aerial Photography, 97, 46–55. https://doi.org/10.23939/istcgcap2023.97.046
  12. Nesterenko, S., Kliepko A. (2022) Geodetic monitoring of the Kaniv HPP dam using satellite radar. International Conference of Young Professionals «GeoTerrace-2022», 3-5 October 2022, Lviv, Ukraine. https://doi.org/10.3997/2214-4609.2022590018
  13. Palianytsia, B., Dzhuman, B., & Sidorov, I. (2019). Hravimetrychni roboty na terytorii Dnistrovskoi HAES [Gravimetric works on the territory of the Dnister PSPP]. Suchasni dosiahnennia heodezychnoi nauky ta vyrobnytstva, 2, 24–31.
  14. Pylypovych, O. V., & Kovalchuk, I. P. (2017). Heoekolohiia richkovo-baseinovoi systemy verkhnoho Dnistra [Geoecology of the river-basin system of the upper Dnister]. LNU imeni Ivana Franka.
  15. Romanyuk, Y. O., & Kril, T. V. (2021). Inzhenerno-heolohichni zahrozy pry ekspluatatsii HES ta HAES [Engineering-geological threats during the operation of HPPs and PSPPs]. In Problemy pryrodokorystuvannia, staloho rozvytku ta tekhnohennoi bezpeky rehioniv: Materialy IX mizhnarodnoi naukovo-praktychnoi konferentsii (p. 101). IPPE NAN Ukrainy.
  16. Savchyn, I., & Duma, M. (2016). Dnister PSPP control GNSS network optimization. Geodesy, Cartography and Aerial Photography, 84, 17–24.  https://doi.org/10.23939/istcgcap2016.02.017
  17. Savchyn, I., & Pronyshyn, R. (2020). Differentiation of recent local geodynamic and seismic processes of technogenic-loaded territories based on the example of Dnister Hydro Power Complex (Ukraine). Geodesy and Geodynamics, 11(5), 391–400. https://doi.org/10.1016/j.geog.2020.06.001
  18. Savchyn, I., Kukhtar, D., & Danyliv, N. (2025). Comprehensive geodetic station for multi-technique ground motion monitoring. In International Conference of Young Professionals «GeoTerrace-2025» (pp. 1–5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.202552060
  19. Sidorov, I. S., Perii, S. S., & Sarnavskyi, V. H. (2015). Vyznachennia rukhiv zemnoi poverkhni v raioni Dnistrovskoi HAES suputnykovymy ta nazemnymy heodezychnymy metodamy [Determination of movements of the earth's surface in the area of the Dnister PSPP by satellite and terrestrial geodetic methods]. Geodynamika, 2, 15–25. https://doi.org/10.23939/jgd2015.02.015
  20. Tretyak K., Brusak I., Bubniak I., Zablotskyi F. (2021). Vplyv nepryplyvnoho atmosfernoho navantazhennia na velyki inzhenerni sporudy. JDN. No. 2(31). 16–28. (in Ukrainian).  https://doi.org/10.23939/jgd2021.02.016
  21. Tretyak, K. R., & Duma, M. V. (2018). Optymalne proiektuvannia i zhushchennia inzhenernykh HNSS-merezh [Optimal design and densification of engineering GNSS networks].
  22. Tretyak, K., & Brusak, I. (2022). Suchasni deformatsii zemnoi kory terytorii zakhodu Ukrainy za danymy HNSS merezhi «Geoterrace» [Modern deformations of the Earth’s crust in the territory of Western Ukraine according to the data of the GNSS network "Geoterrace"]. Geodynamika, 1(32), 16–25. https://doi.org/10.23939/jgd2022.02.016
  23. Tretyak, K., & Kukhtar, D. (2025). Time Series Analysis of GNSS, InSAR, and Robotic Total Station Measurements for Monitoring Vertical Displacements of the Dnister HPP Dam (Ukraine). Geomatics, 5(4), 73. https://doi.org/10.3390/geomatics5040073
  24. Tretyak, K., Nesterenko, S., & Bisovetskyi, Yu. (2023). Complex InSAR radar image processing, GNSS and TPS measurements to determine the Kaniv HPP dam deformations. Research Square. https://doi.org/10.21203/rs.3.rs-3426456/v1
  25. Tretyak, K., Vivat, A., Demianiv, O., Navodych, M., Ladanivskyy, B., & Tymoshyn, S. (2025). Development, testing, and implementation of an LC GNSS receiver. Geodesy, Cartography and Aerial Photography, 101, 53. https://doi.org/10.23939/istcgcap2025.101.053
  26. Wempen, J. (2020) Application of DInSAR for short period monitoring of initial subsidence due to longwall mining in the mountain west United States. International Journal of Mining Science and Technology. Volume 30, Issue 1. 33-37. https://doi.org/10.1016/j.ijmst.2019.12.011
  27. Yazici, B. and Gormus, E. (2020) Investigating persistent scatterer InSAR (PSInSAR) technique efficiency for landslides mapping: a case study in Artvin dam area, in Turkey   Geocarto International. 37:8. 2293-2311. https://doi.org/10.1080/10106049.2020.1818854
  28. Zyhar, A., Savchyn, I., Yushchenko, Y., & Pasichnyk, M. (2021). Analysis of inclinometric observations and prediction of soils deformations in the area of the Dnister PSPP. Geodynamics, 1(30), 17–24. https://doi.org/10.23939/jgd2021.01.017