Optimal algorithms for computing multiple integrals

The article deals with optimization algorithms for implementation of Simpson’s cubature rule using the principle of double recalculation in calculating multiple integrals. A comparison is represented for the suggested algorithm with the built-in functions of the application package of computer mathematics by test example of computing integral trigonometric functions. The functionality of the Computing Software Mathematica and Maple use is extended.

  1. Binder K., Heermann D. Monte Carlo Simulation in Statistical Physics. Springer-Verlag, Berlin, Heidelberg (2010).
  2. Gavryliyk I. P., Makarov V. L. Metodi obchislen': pidruchnik u dvokh chast. Kyiv, Vishcha shkola, Ch.2 (1995), (in Ukrainian).
  3. Veitsblit O. Y. Metod kratnogo pererakhunku. Informatsiyni tekhnologii v osviti. 7, 50–60 (2011), (in Ukrainian).
  4. Lazurchak I. I., Gal' Yu. M. Chislennaya realizatsiya kvadraturnoy formuly Simpsona s avtomaticheskim vyborom shaga. Kyiv, 17, U-89. Dep. v UkrNIINTI (1989), (in Russian).
  5. Lazurchak I. I., Kobil'nik T. P. Sistemi komp'yuternoi matematiki: navchal'niy posibnik. Drohobych, Kolo (2013), (in Ukrainian).
  6. Makarov V. L., Lazurchak I. I. Dvukhstoronniy FD-metod resheniya zadachi Dirikhle dlya uravneniya Gel'mgol'tsa. Differents. uravneniya. 3, n.35, 388–395 (1999), (in Russian).
  7. Yanke E., Emde F., Lesh F. Special Functions. Nauka, Moscow (1977), (in Russian).