Досліджено ефективність існуючих точних та евристичних алгоритмів розв’язання задачі комівояжера. Зроблено висновки щодо доцільності їх застосування при розв’я- занні задач великих розмірностей, а також при декомпозиції.
Existing exact and heuristic algorithms’ efficiency for solving Traveling Salesman Problem has been investigated. The conclusions were made of their application for solving large-scale problems as well as for using with decomposition.
- Reinelt, Gerhard (1994), The Traveling Salesman: Computational Solutions for TSP Applications. Lecture Notes in Computer Science 840, Springer–Verlag, Berlin.
- Reinelt, Gerhard (1992), Fast heuristics for large geometric traveling salesman problems. ORSA Journal on computing, 4:206-217
- David S. Johnson and Lyle A. McGeoch. Experimental Analysis of Heuristics for the STSP. In Gutin and Punnen, editors, The Traveling Salesman Problem and its Variations. Kluwer Academic Publishers, 2002.
- S. Lin and B. W. Kernighan. An effective heuristic algorithm for the Traveling salesman problern. Operations Research, 21:498–516. 1973.
- S. Lin. Computer solutions of the travelling salesman problem. Bell System Technical Journal 44, pages 2245–2269, 1965.
- K .Helsgaun, «An effective implementation of the Lin–Kernighan Traveling Salesman Heuristic», 2002.
- Reinelt, Gerhard (1991) TSPLIB — A traveling salesman problem library, ORSA Journal on Computing 3, 376–384.
- http://www.research.att.com/~dsj/chtsp/
- D. Applegate, R.E. Bixby, V. Chvátal, and W. Cook. On the solution of traveling salesman problems. Documenta Mathematica, Extra Volume ICM III: 645–656, 1998.
- D. Applegate, W. Cook, A. Rohe. Chained Lin–Kernighan for large traveling salesman problems. INFORMS J. Computing, to appear.
- D. Applegate, R.E. Bixby, V. Chvátal, and W. Cook. Findong tours in the TSP.1998.
- D. Applegate, R.E. Bixby, V. Chvátal, and W. Cook. Findong cuts in the TSP.1995
- http://www.tsp.gatech.edu/concorde.html
- D. Neto. Efficient cluster compensation for Lin–Kernighan Heuristics. PhD thesis, Department of Computer Science, University of Toronto, 1999.
- G. Laporte, J-Y. Potvin, F. Quilleret, «A Tabu Search using Genetic Diversification for the Clustered Traveling Salesman Problem», Journal of Heuristics, Vol 2 (3), p. 187-200, 1996.
- Held, M., and Karp, R. M. (1970), «The Traveling Salesman Problem and Minimum Spanning Trees», Operations Research. 18:1138–1162.
- Held, M., and Karp, R. M. (1971), «The Traveling Salesman Problem and Minimum Spanning Trees: part II», Mathematical Programming 1:6–25.
- C. L. Valenzuela and A. J. Jones, ‘‘Estimating the Held–Karp lower bound for the geometric TSP, ’’ Manuscript dated 8 June 1995.
- Balas, E., and Toth, P. (1985), «Branch and Bound Methods», in The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. E. L. Lawler, J. K Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys. Eds. John Wiley and Sons, New York.
- Held, M., Wolfe, P., and Crowder, H. P. (1974), «Validation of subgradient optimization», Mathematical Programming 6:62–88
- Wolsey, L. (1980), «Heuristic analysis, linear programming, and branch and bound», Mathematical Programming Study 13:121–134.
- Shmoys, D. B., and Williamson, D. P. (1990), «Analyzing the Held–Karp TSP Bound: A Monotonicity Property with Application», Information Processing Letters. 35:281–285.
- Christofides, N. (1979), «The Traveling Salesman Problem», in Combinatorial Optimization. N. Christophides, A. Mingozzi, P. Toth and C. Sandi. Eds. John Wiley and Sons, New York.
- Volgenant, T., and Jonker, R. (1982), «A branch and bound algorithm for the symmetric traveling salesman problem based on the 1–tree relaxation», European Journal of Operational Research. 9:83–89.
- Johnson, David S. (1990), «Local Optimization and the Traveling Salesman Problem», Automata Languages and Programming: 17th International Colloquium Proceedings.
- Johnson, D. S., McGeoch L. A., and Rothberg, E.E. (1996), «Asymptotic experimental analysis for the Held–Karp traveling salesman bound», Proceeding 1996 ACM–SIAM symposium on Discrete Algorithms.
- G. B. Dantzig, R. Fulkerson, and S. M. Johnson, Solution of a large–scale traveling salesman problem, Operations Research 2 (1954), pp. 393–410.
- Johnson, D. S., McGeoch L. A. The traveling salesman problem: A case study in local optimization. In E.H.L. Aaarts and J.K. Lenstra, editors, Local Search in Combinatorial Optimization, pp 215–310, John Wiley & Sons, New York, 1997.
- J. L. Bentley, ‘‘Multidimensional binary search trees used for associative search, ’’ Comm. ACM 18 (1975), 309–517.
- J. L. Bentley, ‘‘Experiments on traveling salesman heuristics, ’’ in Proc. 1st Ann. ACMSIAM Symp. on Discrete Algorithms, SIAM, Philadelphia, PA, 1990a, 91-99.
- J. L. Bentley, ‘‘K d trees for semidynamic point sets, ’’ in Proc. 6th Ann. Symp. on Computational Geometry, ACM, New York, 1990b, 187–197.
- J. L. Bentley, ‘‘Fast algorithms for geometric traveling salesman problems, ’’ ORSA J. Comput. 4 (1992), 387–411.
- D. S. Johnson. Local optimization and the traveling salesman problem. In ICALP '90. pages 446–461. Springer–Verlag, 1990. Proceedings of the lith Colloquium on Automata. Languages and Programming.
- B. Chandra. H. Karioff. and C. Tovey. 'New results on the old k–opt algorithm for The TSP. In Proceedings of the Fifth ACM–SIAM Symposium on Discrete Algorithms. Pages 150–159, 1994.
- L. Fredman, D. S. Johnson. L. A. McGeoch. and G. Ostheimer. Data Structures for Traveling salesmen. Journal of Algorithms. 18:432–479. 1995.