Vibration of orthotropic doubly curved panel with a set of inclusions of arbitrary configuration with different types of connections with the panel
In the framework of the refined theory of shells, which takes into account transverse shear deformation and all inertial components, the solution of the problem on the steady-state vibration of the orthotropic doubly curved panel with the arbitrary number of absolutely rigid inclusions of the arbitrary geometrical form and location is constructed. The inclusions have different types of connections with the panel and perform the translational motion in the normal direction to the middle surface of the panel. The external boundary of the panel is of the arbitrary geometrical configuration.