multiple solutions

Numerical solutions and stability analysis of unsteady hybrid nanofluid flow over a shrinking sheet with heat generation

The study focuses on the generation of multiple numerical solutions and stability analysis for the case of an unsteady copper-alumina/water hybrid nanofluid subjected to a shrinking sheet.  Heat generation as the potential contributing factor in the heat transfer progress is considered as well as the suction effect.  The governing model (partial differential equations) is developed based on the boundary layer assumptions, which then are transformed into a set of ordinary (similarity) differential equations.  The bvp4c solver is used to search all possible solutions and