набір даних

Метод виявлення дезінформації на основі аналізу текстових даних із застосуванням TF-IDF та контекстних векторних представлень

У статті розглянуто підхід до виявлення джерел дезінформації у цифровому середовищі за допомогою аналізу текстів із використанням методів машинного навчання та опрацювання природної мови. Запропонований метод базується на гібридному представленні тексту, яке поєднує частотні ознаки (TF-IDF) з контекстними векторними представленнями, отриманими за допомогою моделі IBM Granite.

РОЗУМІННЯ ВЕЛИКИХ МОВНИХ МОДЕЛЕЙ: МАЙБУТНЄ ШТУЧНОГО ІНТЕЛЕКТУ

У статті проведено дослідження новітнього напрямку у штучному інтелекті - Великі Мовні Моделі, які відкривають нову еру в обробці природної мови, надаючи можливість створення більш гнучких і адаптивних систем. З їх допомогою досягається високий рівень розуміння контексту, що збагачує досвід користувачів та розширює сфери застосування штучного інтелекту. Великі мовні моделі мають величезний потенціал для переосмислення взаємодії людини з технологіями та зміни уявлення про машинне навчання.

Дослідження методів інтелектуального аналізу даних для класифікації незбалансованих наборів даних

Завдяки стрімкому розвитку інформаційних технологій, які широко використовуються у всіх сферах людського життя та діяльності, сьогодні накопичено надзвичайно великі обсяги даних. Відповідно застосування методів машинного навчання до цих даних дає змогу отримати нові практично корисні знання, які можуть бути використані для маркетингових, управлінських та дослідницьких цілей. Серед завдань інтелектуального аналізу даних – задачі регресії, прогнозування, кластеризації, класифікації та асоціативних правил. У цьому дослідженні розв’язано задачу бінарної класифікації.