Прогнозне обслуговування

Geospatial and Wavelet-Based Feature Fusion for Advanced RUL Forecasting in Agricultural Machinery

This study extends previous research on Remaining Useful Life (RUL) prediction for agricultural vehicles by utilizing an enriched dataset to overcome earlier limitations in forecasting RUL for electric and hydraulic system components. Influential features have been identified through Pearson correlation and Random Forest feature importance analysis. Discrete Wavelet Transform (DWT) has been applied to extract additional approximation and detail coefficients, enhancing the feature set.

АЛГОРИТМ ПРОГНОЗУВАННЯ ПАРАМЕТРІВ ВІБРАЦІЇ ОБ'ЄКТІВ НА ОСНОВІ ІСТОРИЧНИХ ДАНИХ ДЛЯ ПРЕДИКТИВНОГО ОБСЛУГОВУВАННЯ

The article examines the advantages and disadvantages of an algorithm used to determine the time interval for a monitored object to reach a specific vibration level for use in predictive maintenance in Industry 4.0. The studied algorithm will potentially predict how long before an object fails, helping to reduce downtime and maintain production flow