гібридна модель

Hybrid Behavioural Analysis Method for Early Detection of Anomalous Activity in Web Applications

The research introduces a hybrid behavioural analysis technique for early detection of anomalous user behavior observed on web applications. This strategy involves statistical probability modeling and sequence- based deep learning to design interpretable and robust anomaly detection. A probability baseline has been obtained as a probabilistic basis using KDE (Kernel Density Estimation) and longitudinal time series patterns are sampled using an LSTM network. The hybrid anomaly score combines these two models to dynamically analyze behavioural deviations.

ПРОГНОЗУВАННЯ ЗАЛИШКОВОГО ПРОБІГУ ЕЛЕКТРОМОБІЛЯ З УРАХУВАННЯМ ДЕГРАДАЦІЇ БАТАРЕЇ НА ОСНОВІ ДАНИХ МАШИННОГО НАВЧАННЯ

Прогнозування залишкового пробігу електромобіля (EV) є критично важливим завданням для підвищення ефективності планування поїздок, зниження ризику повної розрядки батареї та покращення користувацького досвіду. Одним із основних факторів, що ускладнює точність таких прогнозів, є деградація літій-іонних батарей, яка поступово знижує їхню ємність і впливає на запас ходу. У цій статті досліджується вплив врахування деградації батареї через показник стану здоров’я (SoH) на точність прогнозування пробігу за допомогою алгоритмів машинного навчання.