SYNTHESIS OF ZINC SULFIDE AND ZINC SELENIDE SEMICONDUCTOR THIN FILMS. REVIEW

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

The zinc sulfide (ZnS) and zinc selenide (ZnSe) films of belongs to the AIIBVI group of semiconductors type, which are the main part of photosensitive elements of electronic devices. An analytical review of the scientific and technical literature shows that in recent years intensive research has been conducted to replace toxic cadmium-containing films with non-toxic counterparts, while maintaining the effectiveness of photovoltaic elements. The ZnS and ZnSe films are the most promising for this replacement. This means that the production of ZnS and ZnSe solid semiconductor films with a simple and reproducible method that must satisfy the economic and environmental aspects of production and provide high quality material is an important and actual scientific task.

In recent years, the ZnS and ZnSe films are obtained by methods that are based on physical or chemical processes. The first ones include electron-beam deposition, molecular beam epitaxy, impulse laser deposition, and radio frequency magnetron sputtering. To the latter – electrochemical deposition, sol-gel deposition, chemical deposition from the gas phase, sequential ion-layer adsorption with reaction and chemical deposition. The obtaining conditions and properties of zinc chalcogenide films, synthesized by various methods, are summarized in one table.

Physical methods are quite energy-intensive, require the use of high temperature, often vacuum, expensive equipment. The crystal structure of the films is predominantly cubic. This can be explained by the fact that they are obtained from powders of ready compounds of zinc chalcogenides, which have the same structure. The energy for the complete phase transformation to hexagonal phase is small. Chemical methods are simpler, cheaper, less energy consumer than physical. They do not require the use of expensive equipment. The exception is chemical vapor deposition. The films obtained by these methods are not inferior of their characteristics to those obtained by physical methods. The crystalline structure of the films can occur of both cubic and hexagonal or their mixture, because, unlike physical methods, the zinc chalcogenide compound is obtained on a substrate from initial reagents containing zinc and chalcogen, while passing a chemical reaction between them.

The method of chemical deposition is noted as the optimal for the obtaining of ZnS and ZnSe films. It is ideal for the manufacture of thin films on large areas of substrates. Synthesis of coatings takes place at temperatures below 100 °C and atmospheric pressure. By describing the chemical deposition method, the chemistry of the formation process of slightly soluble compounds of ZnS and ZnSe is given.

1. Andreev A.A. Synthesis and Some Properties of Single Crystals of the ZnxGd1-xS and ZnSySe1-y
Solid Solutions / A.A. Andreev, M.F. Bulanyi, S.A. Golikov, L.A. Mozharovsikii // Russian Journal of
Inorganic Chemistry. – 1995. – Vol. 40. – P. 1039–1042. 2. Knitter S. Der Chemische Transport von
Mischkristallen in den Systemen MnS/ZnS, FeS/ZnS und FeS/MnS / S. Knitter, M. Binnewies // Zeitschrift
für anorganische und allgemeine Chemie. – 1999. – Vol. 625, Iss. 9. – P. 1582–1588. 3. Block S. Round-
Robin Study of the High Pressure Phase Transition in ZnS / S Block // Acta Crystallographica, Section A. –
1978. – Vol. 34. – S. 316a. 4. Smith P.L. The high-pressure structures of zinc sulphide and zinc selenide /
P. L. Smith, J. E. Martin // Physics Letters. – 1965. – Vol. 19, Iss. 7. – P. 541–543. 5. Bither T. A. Transition
Metal Pyrite Dichalcogenides. High-Pressure Synthesis and Correlation of Properties / T. A. Bither,
R. J. Bouchard, W.H. Cloud, P.C. Donohue, W.J. Siemons // Inorganic Chemistry. – 1968. – Vol. 7. –
P. 2208–2220. 6. Parasyuk O.V. Phase diagram of the Cu2GeSe3–ZnSe system and crystal structure of the
Cu2ZnGeSe4 compound / O.V. Parasyuk, L.D. Gulay, Y.E. Romanyuk, L.V. Piskach // Journal of Alloys and
Compounds. – 2001. – Vol. 329. P. 202–207. 7. Kulakov M.P. Phase Diagram and Crystallization In The
System CdSe-ZnSe / M.P. Kulakov, I.V. Balyakina, N.N. Kolesnikov // Inorganic Materials. – 1989. –
Vol. 25. – P. 1386–1389. 8. Kurbatov D. Growth kinetics and stoichiometry of ZnS films obtained by closespaced
vacuum sublimation technique / D. Kurbatov, A. Opanasyuk, S. Duvanov, A. Balogh, H. Khlyap //
Solid State Sciences. – 2011. – Vol. 13. – P. 1068–1071. 9. Arslana M. Structural and optical properties of
copper enriched ZnSe thin films prepared by closed space sublimation technique / M. Arslana,
A. Maqsood, A. Mahmoo, A. Iqba // Materials Science in Semiconductor Processing. – 2013. – Vol. 16. –
P. 1797–1803. 10. Ivashchenko M.M. Influence of deposition conditions on morphological, structural,
optical and electro-physical properties of ZnSe films obtained by close-spaced vacuum sublimation / M.M.
Ivashchenko, I.P. Buryk, A.S. Opanasyuk, D. Nam, H. Cheong, Ja.G. Vazievb, V.V. Bibyk // Materials
Science in Semiconductor Processing. – 2015. – Vol. 36. – P. 13–19. 11. Emam-Ismail M. Microstructure
and optical studies of electron beam evaporated ZnSe1−xTex nanocrystalline thin films / M. Emam-Ismail,
M. El-Hagary, E. Shaaban, A. Al-Hedeib. // Journal of Alloys and Compounds. – 2012. – Vol. 532. –
P. 16–24. 12. Jian S. Berkovich nanoindentation-induced dislocation energetics and pop-ineffects in ZnSe
thin films / S. Jian, Y. Lin // Journal of Alloys and Compounds. – 2014. – Vol. 590. – P. 153–156. 13. Lee
L. Origin of localized states in zinc-blende ZnCdSe thin films and the influence on carrier relaxation of
self-assembled ZnTe/ZnCdSe quantum dots / L. Lee, Y. Dai, C. Yang, W. Fan, W. Chou // Journal of Alloys
and Compounds. – 2015. – Vol. 632. – P. 392–396. 14. Zhang W. Phase controlled synthesis and optical
properties of ZnS thin films by pulsed laser deposition / W. Zhang, X. Zeng, J. Lu, H. Chen. // Materials
Research Bulletin. – 2013. – Vol.48. – P. 3843–3846. 15. Chen L. Growth of ZnSe nano-needles by pulsed
laser deposition and their application in polymer/inorganic hybrid solar cells / L. Chen, J.S. Lai, X.N. Fu,
J. Sun, Z. Ying, J. Wu, H. Lu, N. Xu. // Thin Solid Films. – 2013. – Vol. 529. – P. 76–79. 16. Díaz-Reyes J.
Structural and optical characterization of wurtzite type ZnS / J. Díaz-Reyes, R. Castillo-Ojeda, R. Sanchez-
Espíndola, M. Galvan-Arellano, O. Zaca-Moran // Current Applied Physics. – 2015. – Vol. 15. – P. 103–
109. 17. Xu X. Structural and optical studies of ZnS nanocrystalfilms prepared by sulfosalicylic acid
(C7H6O6S)-assisted galvanostatic deposition with subsequent annealing / X. Xu, F. Wang, J. Liu, Z. Lia,
9
J. Ji, J. Chen // Thin Solid Films. – 2012. – Vol. 520. – P. 6864–6868. 18. Arbi N. Experimental investigation
of the effect of Zn/S molar ratios on the physical and electrochemical properties of ZnS thin films / N.
Arbi, I. Ben Assaker, M. Gannouni, A. Kriaa, R. Chtourou // Materials Science in Semiconductor Processing.
– 2015. – Vol. 40. – P. 873–878. 19. Kumar S. Development of nanocrystalline ZnSe thin film
through electrodeposition from a non-aqueous solution / S. Kumar, M. Nuthalapatia, J. Maity // Scripta
Materialia. – 2012. – Vol.67. – P. 396–399. 20. Bu I. Sol–gel synthesis of ZnS(O,OH) thin films: Influence
of precursor and process temperature on its optoelectronic properties / I. Bu // Journal of Luminescence. –
2013. – Vol. 134. – P. 423–428. 21. Ehsana M.A. Surface morphological and photoelectrochemical studies
of ZnS thin films developed from single source precursors by aerosol assisted chemical vapour deposition /
M.A. Ehsana, T.A. Nirmal Peiris, K.G. Upul Wijayantha, H. Khaledi, H. N. Ming, M. Misran, Z. Arifin,
M. Mazhar // Thin Solid Films. – 2013. – Vol. 540. – P. 1–9. 22. Ateş A. ZnS thin film and Zn/ZnS/n-Si/Au-
Sb sandwich structure grown with SILAR method and defining the characteristic parameters / A. Ateş,
B. Güzeldir, M. Sağlam // Materials Science in Semiconductor Processing. – 2011. – Vol. 14, Iss. 1. –
P. 28–36. 23. Offor P. O. Chemical spray pyrolysis synthesis of zinc sulphide (ZnS) thin films via double
source precursors / P.O. Offor, B.A. Okorie, B.A. Ezekoye, V.A. Ezekoye, J. I. Ezema // Journal of Ovonic
Research. – 2015. – Vol. 11, №. 2. – P. 73–77. 24. Liu W. Effect of deposition variables on properties of
CBD ZnS thin films prepared in chemical bath of ZnSO4/SC(NH2)2/Na3C3H5O7/NH4OH / W. Liu, C. Yang,
S. Hsieh // Applied Surface Science. – 2013. – Vol 264. – P.213–218. 25. Chen L. Comparative study of
ZnSe thin films deposited from modified chemical bath solutions with ammonia-containing and ammoniafree
precursors / L. Chen, D. Zhang, G. Zhai, J. Zhang // Materials Chemistry and Physics. – 2010. – Vol.
120, Iss. 2–3. – P. 456–460. 26. Agawane G.L. Preparation and characterization of chemical bath
deposited nanocrystalline ZnSe thinfilms using Na3-citrate and hydrazine hydrate: A comparative study /
G.L. Agawane, S. W. Shin, M.P. Suryawanshi, K.V. Gurav, A.V. Moholkar, J. Y. Lee, P.S. Patil, J. H. Yun,
J. H. Kim // Materials Letters. – 2013. – Vol. 106. – P. 186–189. 27. Kassim A. Deposition and
characterization of ZnS thin films using chemical bath deposition method in the presence of sodium
tartrate as complexing agent / A. Kassim, T. Teea, H. Mina, S. Nagalingamb // Pakistan Journal of
Scientific and Industrial Research Series A: Physical Sciences. – 2011. – Vol 54(1). – P. 1–5. 28. Pawar
S.M. Recent status of chemical bath deposited metal chalcogenide and metaloxide thin films / S.M. Pawar,
B.S. Pawar, J.H. Kim, Oh-Shim Joo, C.D. Lokhande // Curr. Appl. Phys. – 2011. – Vol. 11. – P. 117–161.
29. Марков В.Ф., Маскаева Л.Н., Иванов П.Н. Гидрохимическое осаждение пленок сульфидов
металлов: моделирование и експеримент / Екатеринбург: УрО РАН, 2006. – 217 с. 30. Liu Q.
Influence of the Ultrasonic VIbration on Chemical Bath Deposition of ZnS thin Films / Q. Liu, G. Mao /
Surface Review and Letters. – 2009. – Vol. 16, No. 6. – P. 895–899.