Photocatalytic Degradation of Polyethylene Plastics Using MgAl2O4 Nanoparticles Prepared by Solid State Method

2023;
: pp. 503 - 509
1
Department of chemistry, College of Science, University of Thi-Qar
2
Department of Chemistry, College of Science, University of Thi-Qar

In this study, MgAl2O4 nanoparticles with different calcination times were synthesized for photocatalytic applications. Different analyses techniques such as XRD, SEM, EDX, UV-visible, and FTIR were performed to investigate the structural, chemical, optical, and mor-phological properties of the synthesized nanoparticles. XRD analysis revealed the formation MgAl2O4 spinel structure. UV-Visible measurements indicate that MgAl2O4-2 nanoparticles had a narrower energy gap compared to MgAl2O4-1 and MgAl2O4-3. Results of SEM analysis revealed that the synthesized MgAl2O4 nanoparticles consist of small aggregated particles with (40-60 nm) particles size. EDX measurements con-firmed the formation of MgAl2O4 nanoparticles without any impurities. The photocatalytic performance was evaluated by the photodegradation of polyethylene plastics using MgAl2O4 nanoparticles under UV irradiation. The FT-IR measurements before and after the degradation of polyethylene plastics confirm the formation of new functional groups as a result of photodegradation processes.

  1. Plastics Europe, 2020. Plastics – the Facts 2020: An Analysis of European Plastics Production, Demand and Waste Data Brussels, Belgium.
  2. Thompson, R.C.; Swan, S.H.; Moore, C.J.; vom Saal, F.S. Our Plastic Age. Phil. Trans. R. Soc. B 2009, 364, 1973-1976. https://doi.org/10.1098/rstb.2009.0054
  3. Wang, J.; Tan, Z.; Peng, J.; Qiu, Q.; Li, M. The Behaviors of Microplastics in the Marine Environment. Mar. Environ. Res. 2016, 113, 7-17.‏ https://doi.org/10.1016/j.marenvres.2015.10.014
  4. Singh, B.; Sharma, N. Mechanistic Implications of Plastic De-gradation. Polym. Degrad. Stab. 2008, 93, 561-584.‏ https://doi.org/10.1016/j.polymdegradstab.2007.11.008
  5. Mueller, R.-J. Biological Degradation of Synthetic Polyesters—Enzymes as Potential Catalysts for Polyester Recycling. Process Biochem. 2006, 41, 2124-2128.‏ https://doi.org/10.1016/j.procbio.2006.05.018
  6. Shimao, M. Biodegradation of Plastics. Curr. Opin. Biotechnol. 2001, 12, 242-247.‏ https://doi.org/10.1016/S0958-1669(00)00206-8
  7. Miranda-García, N.; Suárez, S.; Sánchez, B.; Coronado, M.; Malato, S.; Maldonado, I. Photocatalytic Degradation of Emerging Contaminants in Municipal Wastewater Treatment Plant Effluents Using Immobilized TiO2 in a Solar Pilot Plant. Appl. Catal. B 2011, 103, 294-301.‏ https://doi.org/10.1016/j.apcatb.2011.01.030
  8. Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined Effects of UV Exposure Duration and Me-chanical Abrasion on Microplastic Fragmentation by Polymer Type. Environ. Sci. Technol. 2017, 51, 4368-4376.‏ https://doi.org/10.1021/acs.est.6b06155
  9. Hämer, J.; Gutow, L.; Köhler, A.; Saborowski, R. Fate of Mi-croplastics in the Marine Isopod Idotea emarginata. Environ. Sci. Technol. 2014, 48, 13451-13458.‏ https://doi.org/10.1021/es501385y
  10. Zhu, K.; Jia, H.; Zhao, S.; Xia, T.; Guo, X.; Wang, T.; Zhu, L. Formation of Environmentally Persistent Free Radicals on Micro-plastics under Light Irradiation. Environ. Sci. Technol. 2019, 53, 8177-8186.‏ https://doi.org/10.1021/acs.est.9b01474
  11. Gigault, J.; Pedrono, B.; Maxit, B.; Ter Halle, A. Marine Plastic Litter: The Unanalyzed Nano-Fraction. Environ. Sci. Nano 2016, 3, 346-350. https://doi.org/10.1039/C6EN00008H
  12.  AL-Zamili, F.; Abass, A.; Najim, A. Effect of Some Organic Fillers on the Mechanical Properties of High Density Polyethylene. J.Thi-Qar Sci. 2009, 1, 27-34.‏
  13. Hammed, M.; Hamad, T. Study Of TiO2 Nanoparticles Induc-tion for Biological System. Thi-Qar Medical Journal 2019, 17, 110-117.‏
  14. Paço, A.; Duarte, K.; da Costa, J.P.; Santos, P.S.M.; Pereira, R.; Pereira,M.E.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Biodegradation of Polyethylene Microplastics by the Marine Fungus Zalerion Maritimum. Sci. Total Environ. 2017, 586, 10-15.‏ https://doi.org/10.1016/j.scitotenv.2017.02.017
  15. Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Hernández-López, J.M.; de la Rosa, J.R.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. Microplastic Pollution Reduction by a Carbon and Nitrogen-Doped TiO2: Effect of pH and Temperature in the Photocatalytic Degradation Process. J. Hazard. Mater. 2020, 395, 122632.‏ https://doi.org/10.1016/j.jhazmat.2020.122632
  16. Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. New Strategy for Microplastic Degradation: Green Photocatalysis Using a Protein-Based Porous N-TiO2 Semiconductor. Ceram. Int. 2019, 45, 9618-9624.‏ https://doi.org/10.1016/j.ceramint.2018.10.208
  17. Kulkarni, M.; Thakur, P. The Effect of UV/TiO2/H2O2 Process and Influence of Operational Parameters on Photocatalytic Degrada-tion of Azo Dye in Aqueous TiO2 Suspension. Chem. Chem. Tech-nol. 2010, 4, 265-270. https://doi.org/10.23939/chcht04.04.265
  18. Nikolenko, A.; Melnykov, B. Photocatalytic Oxidation of Formaldehyde Vapour Using Amorphous Titanium Dioxide. Chem. Chem. Technol. 2010, 4, 311-315. https://doi.org/10.23939/chcht04.04.311
  19. Coronel, S.; Pauker, Ch.S.; Jentzsch, P.V.; de la Torre, E.; Endara, D.; Muñoz-Bisesti, F. Titanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol. Chem. Chem. Technol. 2020, 14, 161-168. https://doi.org/10.23939/chcht14.02.161
  20. Ali, S.S.; Qazi, I.A.; Arshad, M.; Khan, Z.; Voice, T.C.; Meh-mood, Ch.T. Photocatalytic Degradation of Low Density Polyethy-lene (LDPE) Films Using Titania Nanotubes. Environ. Nanotechnol. Monit. Manag. 2016, 5, 44-53.‏ https://doi.org/10.1016/j.enmm.2016.01.001
  21. Tofa, T.S.; Ye, F.; Kunjali, K.L.; Dutta, J. Enhanced Visible Light Photodegradation of Microplastic Fragments with Plasmonic Platinum/Zinc Oxide Nanorod Photocatalysts. Catalysts 2019, 9, 819.‏ https://doi.org/10.3390/catal9100819
  22. Tofa, T.S.; Kunjali, K.L.; Paul, S.; Dutta, J. Visible Light Photocatalytic Degradation of Microplastic Residues with Zinc Oxide Nanorods. Environ Chem Lett 2019, 17, 1341-1346.‏ https://doi.org/10.1007/s10311-019-00859-z
  23. Gardette, M.; Perthue, A.; Gardette, J.-L.; Janecska, T.; Földes, E.; Pukánszky, B.; Therias, S. Photo- and Thermal-Oxidation of Polyethylene: Comparison of Mechanisms and Influence of Unsaturation Content. Polym. Degrad. Stab. 2013, 98, 2383-2390. https://doi.org/10.1016/j.polymdegradstab.2013.07.017
  24. Dinda, B. Essentials of pericyclic and photochemical reactions. Vol. 93; Springer: Switzerland, 2017.
  25. Shang, J.; Chai, M.; Zhu, Y. Photocatalytic Degradation of Polystyrene Plastic under Fluorescent Light. Environ. Sci. Technol. 2003, 37, 4494-4499.‏ https://doi.org/10.1021/es0209464