Photopolymerization of Poly(Hydroxyethyl Acrylate) (PHEA): Experimental Parameters-Viscoelastic Properties Relationship

2023;
: pp. 592 - 600
1
Centre de Recherche (CRAPC), Laboratoire (LRM), Université de Tlemcen (UABT)
2
Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques
3
Centre de Recherche (CRAPC), Laboratoire (LRM), Université de Tlemcen (UABT)
4
Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculté des Sciences, Université de Tlemcen
5
Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques
6
Laboratoire (LRM), Université de Tlemcen (UABT)

The activity of the photoinitiator system, based on triethanolamine (TEOA) and methylene blue (MB), on the photopolymerization of hydroxyethyl acrylate (HEA) monomer under very soft irradiation conditions, was evaluated. A remarkable difference in the polymerization kinetics of a set of PHEA experiments was underlined according to TEOA/MB concentrations, as well as the solutions pH. Indeed, the complex viscosity (η*), storage modulus (G'), and loss modulus (G") of the resulting polymers were potentially dependent on these experimental parameters despite comparable values of monomer conversion.

  1. Liu, Y.; Hu, J.; Wu, Z. Fabrication of coatings with structural color on a wood surface. Coatings 2020, 10, 32. https://doi.org/10.3390/coatings10010032
  2. Seghier, Z.; Couve, J.; Voytekunas, V.; Lipik, V.; Abadie, M.J.M. Light Curable Dental Composites – Kinetics by Plasma and Halogen Lamps. Chem. Chem. Technol. 2011, 5, 413-421. http://dx.doi.org/10.23939/chcht05.04.413
  3. Fouassier, J. P.; Lalevée, J. Photoinitiators for polymer synthe-sis: scope, reactivity, and efficiency. John Wiley & Sons, 2012.
  4. Fouassier, J.P.; Allonas, X.; Burget, D. Photopolymerization Reactions under Visible Lights: Principle, Mechanisms and Exam-ples of Applications. Prog. Org. Coat. 2003, 47, 16-36. https://doi.org/10.1016/S0300-9440(03)00011-0
  5. Burget, D.; Mallein, C.; Fouassier, J.P. Photopolymerization of Thiol–Allyl Ether and Thiol–Acrylate Coatings with Visible Light Photosensitive Systems. Polymer 2004, 45, 6561-6567. http://dx.doi.org/10.1016/j.polymer.2004.07.052
  6. Hamri, S.; Bouchaour, T.; Maschke, U. Erythro-sine/Triethanolamine System to Elaborate Crosslinked poly (2-Hydroxyethylmethacrylate): UV-Photopolymerization and Swelling Studies. Macromol Symp. 2014, 336, 75-81. https://doi.org/10.1002/masy.201300018
  7. Medvedevskikh, Y.; Khovanets’, G.; Yevchuk, I. Kinetic Model of Photoinitiated Copolymerization of Monofunctional Monomers Till High Conversions. Chem. Chem. Technol. 2009, 3, 1-6. https://doi.org/10.23939/chcht03.01.001
  8. Rubens, M.; Latsrisaeng, P.; Junkers, T. Visible Light-Induced Iniferter Polymerization of Methacrylates Enhanced by Continuous Flow. Polym. Chem. 2017, 8, 6496-6505. https://doi.org/10.1039/C7PY01157A
  9. Ottersbach, P.; Lennarz, K.; Bargon, J. Rheological Study of the Kinetics of Photoinitiated Free Radical Polymerizations with the Quartz Microbalance. Macromol. Chem. Phys. 1994, 195, 3929-3935. https://doi.org/10.1002/macp.1994.021951218
  10. Chiou, B.S.; Khan, S.A. Real-Time FTIR and in situ Rheological Studies on the UV Curing Kinetics of Thiol-ene Poly-mers. Macromolecules 1997, 30, 7322-7328.
  11. Steeman, P.A.; Dias, A.A.; Wienke, D.; Zwartkruis, T. Poly-merization and Network Formation of UV-Curable Systems Moni-tored by Hyphenated Real-Time Dynamic Mechanical Analysis and Near-Infrared Spectroscopy. Macromolecules 2004, 37, 7001-7007. https://doi.org/10.1021/ma049366c
  12. He, H.; Li, L.; Lee, L.J. Photopolymerization and Structure Formation of Methacrylic Acid Based Hydrogels in Water/Ethanol Mixture. Polymer 2006, 47, 1612-1619. https://doi.org/10.1016/j.polymer.2006.01.014
  13. He, H.; Li, L.; Lee, L. J. Photopolymerization and Structure Formation of Methacrylic Acid Based Hydrogels: The Effect of Light Intensity. React. Funct. Polym. 2008, 68, 103-113. https://doi.org/10.1016/j.reactfunctpolym.2007.10.006
  14. Zhang, C.; Han, H.M.; Qu, P.; Xu, J.; Zhou, Y.; Wang, J.; Xu, J. Initiator Concentration Effect on Rheological Properties of a pH-Sensitive Semi-IPN Hydrogel Based on Konjac Glucomannan and Methacrylic Acid. Adv. Mat. Res. 2013, 627, 730-733. https://doi.org/10.4028/www.scientific.net/AMR.627.730
  15. Alim, M.D.; Childress, K.K.; Baugh, N.J.; Martinez, A.M.; Davenport, A.; Fairbanks, B.D.; McBride, M.K.; Worrell, B.T.; Stansbury, J.W.; McLeod, R.R. et al. A Photopolymerizable Ther-moplastic with Tunable Mechanical Performance. Mater. Horiz. 2020, 7, 835-842. https://doi.org/10.1039/C9MH01336A
  16. Barabash, E.; Popov, Y.; Danchenko, Y. The Study of the Influence of Chemical Nature of Functional Groups in Oligomeric and Low--Molecular Modifiers on the Rheological Properties of the Epoxy Oligomer. Chem. Chem. Technol. 2020, 15, 53-60. https://doi.org/10.23939/chcht15.01.053
  17. Garra, P.; Dumur, F.; Morlet-Savary, F.; Dietlin, C.; Foua-ssier, J. P.; Lalevée, J. A New Highly Efficient Amine-Free and Peroxide-Free Redox System for Free Radical Polymerization under Air with Possible Light Activation. Macromolecules 2016, 49, 6296-6309. https://doi.org/10.1021/acs.macromol.6b01615
  18. Podsiadły, R.; Podemska, K.; Szymczak, A.M. Novel Visible Photoinitiators Systems for Free-Radical/Cationic Hybrid Photopo-lymerization. Dyes Pigm. 2011, 91, 422-426. https://doi.org/10.1016/j.dyepig.2011.05.012
  19. Zhang, S.; Li, B.; Tang, L.; Wang, X.; Liu, D.; Zhou, Q. Studies on the Near Infrared Laser Induced Photopolymerization Employing a Cyanine Dye–Borate Complex as the Photoinitiator. Polymer 2001, 42, 7575-7582. http://dx.doi.org/10.1016/S0032-3861(01)00233-6
  20. Padon, K.S.; Scranton, A.B. A Mechanistic Investigation of a Three-Component Radical Photoinitiator System Comprising Me-thylene Blue, N-methyldiethanolamine, and Diphenyliodonium Chloride. J Polym Sci A Polym Chem. 2000, 38, 2057-2066. https://doi.org/10.1002/(SICI)1099-0518(20000601)38:11%3C2057::AID-POLA140%3E3.0.CO;2-5
  21. Bouchikhi, N.; Bouazza, M.; Hamri, S.; Maschke, U.; Lerari, D.; Dergal, F.; Bachari, K.; Bedjaoui-Alachaher, L. Photo-curing Kinetics of Hydroxyethyl Acrylate (HEA): Synergetic Effect of Dye/Amine Photoinitiator Systems. Int J Ind Chem. 2020, 11, 1-9. https://doi.org/10.1007/s40090-019-00197-7
  22. Mills, A.; Wang, J. Photobleaching of Methylene Blue Sensi-tised by TiO2: An Ambiguous System. J. Photochem. Photobiol. A 1999, 127, 123-134. https://doi.org/10.1016/S1010-6030(99)00143-4
  23. Severino, D.; Junqueira, H. C.; Gabrielli, D.S.; Gugliotti M.; Baptista, M. S. Influence of Negatively Charged Interfaces on the Ground and Excited State Properties of Methylene Blue. Photochem Photobiol. 2003, 77, 459-468. https://doi.org/10.1562/0031-8655(2003)0770459IONCIO2.0.CO2
  24. Morita, H.; Sadakiyo, T. Laser-Induced Polymeric Film Formation from Gaseous Methyl Acrylate. J. Photochem. Photobiol. A 1995, 87, 163-167. https://doi.org/10.1016/1010-6030(94)03975-Z
  25. Encinas, M.V.; Rufs, A.M.; Neumann, M.G.; Previtali, C.M. Photoinitiated Vinyl Polymerization by Safranine T/triethanolamine in Aqueous Solution. Polymer 1996, 37, 1395-1398. https://doi.org/10.1016/0032-3861(96)81137-2
  26. Villegas, L.; Encinas, M.V.; Rufs, A.M.; Bueno, C.; Bertolot-ti, S.; Previtali, C.M. Aqueous Photopolymerization with Visible-Light Photoinitiators: Acrylamide Polymerization Photoinitiated with a Phenoxazine Dye/Amine System. J Polym Sci A Polym Chem. 2001, 39, 4074-4082. http://dx.doi.org/10.1002/pola.10059
  27. Valdebenito, A.; Encinas, M.V. Photopolymerization of 2-Hydroxyethyl Methacrylate: Effect of the Medium Properties on the Polymerization Rate. J Polym Sci A Polym Chem. 2003, 41, 2368-2373. https://doi.org/10.1002/pola.10776
  28. Cho, J.D.; Kim, H.K.; Kim, Y.S.; Hong, J.W. Dual Curing of Cationic UV-curable Clear and Pigmented Coating Systems Photo-sensitized by Thioxanthone and Anthracene. Polym. Test. 2003, 22, 633-645. https://doi.org/10.1016/S0142-9418(02)00169-1
  29. Sheng, C.K.; Bin Mat Yunus, W.M.; Yunus, W.M.Z.W.; Talib, Z.A.; Moksin, M.M. UV-Visible Photodegradation of Methylene Blue Doped in Poly (Vinyl Alcohol)(pva) Solid Matrix. Solid State Science and Technology 2003, 11, 124-130. http://psasir.upm.edu.my/id/eprint/42204
  30. Danziger, R.M.; Bar-Eli, K.H.; Weiss, K. The Laser Photoly-sis of Methylene Blue. J. Phys. Chem. 1967, 71, 2633-2640. https://doi.org/10.1021/j100867a037
  31. Tuite, E.M.; Kelly, J.M. New Trends in Photobiology: Photo-chemical Interactions of Methylene Blue and Analogues with DNA and Other Biological Substrates. J. Photochem. Photobiol. B, Biol. 1993, 21, 103-124. https://doi.org/10.1016/1011-1344(93)80173-7
  32. Bonneau, R.; Pottier, R.; Bagno, O.; Joussot-Dubien. J. pH Dependence of Singlet Oxygen Production in Aqueous Solutions Using Thiazine Dyes as Photosensitizers. Photochem. Photobiol. 1975, 21, 159-163. https://doi.org/10.1111/j.1751-1097.1975.tb06646.x
  33. Azmat, R.; Uddin, F. Photo Bleaching of Methylene Blue with Galactose and D-mannose by High Intensity Radiations. Canadian Journal of Pure and Applied Sciences 2008, 2, 275-283.
  34. Wildes, P.D.; Lichtin, N.N.; Hoffman, M.Z.; Andrews, L.; Linschitz, H. Anion and Solvent Effects on the Rate of Reduction of Triplet Excited Thiazine Dyes by Ferrous Ions. Photochem. Photobiol. 1977, 25, 21-25. https://doi.org/10.1111/j.1751-1097.1977.tb07419.x
  35. Faure, J.; Bonneau, R.; Joussot-Dubien, J. Etude en Spectros-copie Par Eclair des Colorants Thiaziniques en Solution Aqueuse. Photochem. Photobiol. 1967, 6, 331-339. https://doi.org/10.1111/j.1751-1097.1967.tb08881.x
  36. Havelcová, M.; Kubát, P.; Němcová, I. Photophysical Properties of Thiazine Dyes in Aqueous Solution and in Micelles. Dyes Pigm. 1999, 44, 49-54. https://doi.org/10.1016/S0143-7208(99)00070-4
  37. Görner, H. Oxygen Uptake Induced by Electron Transfer from Donors to the Triplet State of Methylene Blue and Xanthene Dyes in Air-Saturated Aqueous Solution. Photochem Photobiol Sci. 2008, 7, 371-376. https://doi.org/10.1039/b712496a
  38. Zhong, Q.; Ikeda, S. Viscoelastic Properties of Concentrated Aqueous Ethanol Suspensions of α-Zein. Food Hydrocoll. 2012, 28, 46-52. https://doi.org/10.1016/j.foodhyd.2011.11.014
  39. Geever, T.; Killion, J.; Grehan, L.; Geever, L.M. Chadwick, E.; Higginbotham, C. Effect of Photoinitiator Concentration on the Properties of Polyethylene Glycol Based Hydrogels for Potential Regenerative Medicine Application. Adv. Environ. Biol. 2014, 8, 7-17.