On investigation of the local earthquakes precursors with its direct parameterization

2014;
: pp. 103-113
https://doi.org/10.23939/jgd2014.01.103
Received: November 04, 2013
1
Taras Shevchenko National University of Kyiv
2
Taras Shevchenko National University of Kyiv

Purpose. The purpose of research is to assess the applicability of the electromagnetic precursors from local earthquakes that forming low-amplitude electrodynamic effects together with geophysical and petrophysical data. Investigation of the temporal-spatial relationship these seismomagnetic effects with physical characteristics of the geological environment that sensitive to changes in the stress-strain state can be used to create a new non-seismic methods for forecasting of the local earthquakes. Methodology. The results of mathematical modeling of spatio-temporal characteristics and amplitudes of the electromagnetic precursor caused by the action of elastic waves from the local earthquakes in the Carpathian geodynamic area are compared with the results of geophysical researches that include structural-geodynamic mapping, radon survey, radon monitoring, magneto-mineralogical and petrophysical studies of the volcanic rocks. Results. The calculated seismomagnetic effects from the series of regional earthquakes of Transcarpathian area have a complicated spatial distribution. Most of seismic-induced of magnetization are confined to local and narrow areas and thoron-radon emanation points. As well there occur areas of volcanic rocks that have scattered ferromagnetic phase in crystals of pyroxene and plagioclase. Petromagnetic studies these ferromagnetics shows that they belong to a high-temperature oxidized phases of magnetite and low-temperature maggemite. Originality. First the temporal-spatial characteristics of the seismomagnetic effects (electromagnetic increment) of the local earthquakes of the Carpathian Geodynamic area have been calculated and also a physical and structural-geodynamic aspects of the seismomagnetic effects in the effusive rocks are shown. Practical significance. According to the researches the local areas are determined where the significant seismomagnetic effects and the abnormal emanation are occurring. In these points should be set the precise monitoring of the geomagnetic field variations, measuring of Rn (and To) in the soil air and groundwater and analyses of seismometric data that allow to accumulate material for the creation of reliable models of electromagnetic precursor of the local earthquakes.

1. Tolstoj M.I., Gasanov Ju. L., Moljavko V. G., Ostafijchuk I. M., Serga A. Ju., Prodajvoda G. T., Suhorada A. V. Geohimija, petrofizika i voprosy genezisa novejshih vulkanitov Sovetskih Karpat [Geochemistry, petrophysics and some aspects of genesis of update volcanites of the Soviet Carpathian]. Kiev, Vyshha shkola - High School, 1976, 187 p.
2. Maksymchuk V.Yu., Kuznyetsova V.H., Verbyts'kyy T.Z., Bilins'kyy, A. I., Verbyts'kyy, S. T., Starostenko, V. I. (edit.). Doslidzhennya suchasnoyi heodynamiky Ukrayins'kykh Karpat [On researches of update geodynamics of the Ukrainian Carpathian]. Kyiv, Naukova Dumka - A Science Thought , 2005, 256 p.
3. Surkov V.V. Jelektromagnitnyj predvestnik sejsmicheskoj volny [Electromagnetic precursor of seismic wave]. Geomagnetizm i ajeronomija- Geomagnetics and Aeronomy, 1997, Vol. 38, no.6, pp.155-160.
4. Surkov V.V. Jelektromagnitnye jeffekty pri zemletrjasenijah i vzryvah [Electromagnetic effects by earthquakes and explosions]. MGIFI-MSRPI, 2000.
5. Tolstoy M.I., Kadurin V.M., Shabatura O.V. Paleoheodynamichni vlastyvosti porid tsentral'noyi chastyny Zakarpat·s'koyi seysmoaktyvnoyi zony za danymy kompleksnykh heofizychnykh i mineralohichnykh doslidzhen' [Paleogeodynamical characteristics of central part of the Transcarpathian Seismic Zone' rocks with combined geophysical and mineralogical investigations]. Visnyk Kyivskoho Universytety. Ser. Geologija - Kiev University Herald, Vol. 47, 2009. pp. 42-47.
6. Shabatura O.V. Elektromahnitna provisnykova model' prohnozuvannya lokal'nykh zemletrusiv [An electromagnetical precursor' model of local earthquakes precursor]. Heodynamika-Geodynamics, 2012, Vol. 2(13), pp.90-95.
7. Adushkin V., Ryabova S., Spivak A. and Kharlamov V. Response of the seismic background to geomagnetic variations // Dokl. Earth Sci., 2012, vol. 444, no. 1, pp. 642-645.
https://doi.org/10.1134/S1028334X12050157
8. Arora B., Rawat G., Kumar N. and Choubey V. Multiparameter Geophysical Observatory: gateway to integrated earthquake precursory research // Curr. Sci., 2012, 103, 1286-1299.
9. Fujinawa Y., Takahashi K., Noda Y., Iitaka H. and Yazaki S. Remote Detection of the Electric Field Change Induced at the Seismic Wave Front from the Start of Fault Rupturing // Іnternational Journal of Geophysics Volume 2011 (2011), Article ID 752193, 11 pages http://dx.doi.org/10.1155/2011/752193.
https://doi.org/10.1155/2011/752193
10. Guglielmi A. and Zotov O. Correlation between Pc1 electromagnetic activity and earthquakes // Izv. Phys. Solid Earth, 2010, vol. 46, no. 6, pp. 486-492.
https://doi.org/10.1134/S1069351310060030
11. Hayakawa M., Hobara Y. Current status of seismo-electromagnetics for short-term earthquake prediction, Geomatics, Natural Hazards and Risk, Vol. 1, N. 2, 115-155, 2010.
https://doi.org/10.1080/19475705.2010.486933
12. Jain P., Jain S.K. Investigation of Seismic Precursor Using Correlation Analysis Technique // International Research Journal of Earth Sciences, Vol. 2(2), 35-39, March (2014).
13. Pisa D., Parrot M., Santolik O. Ionospheric density variations recorded before the 2010 Mw 8.8 earthquake in Chile. // J. Geophys. Res. 116, A08309, http://dx.doi.org/10:1029/2011JA016611, p. 8, 2011.
https://doi.org/10.1029/2011JA016611
14. Revil A. and Jardani A. Seismoelectric response of heavy oil reservoirs: theory and numerical modelling // Geophysical Journal International, vol. 180, no. 2, pp. 781-797, 2010.
https://doi.org/10.1111/j.1365-246X.2009.04439.x
15. Rikitake T. Magnetic and electric signals precursory to earthquakes: an analysis of Japanese data // J. Geomagn. Geoelectr. 1987. Vol. 39. No. 1. P. 47-61.
https://doi.org/10.5636/jgg.39.47
16. Sobisevich L., Kanonidi K. and Sobisevich A. Observations of Ultra-Low-Frequency Geomagnetic Disturbances Reflecting the Processes of the Preparation and Development of Tsunamigenic Earthquakes // Dokl. Earth Sci., 2010, vol. 435, no. 2, pp. 1627-1632.
https://doi.org/10.1134/S1028334X10120160
17. Stacey F.D. The seismomagnetic effect // Pure Appl. Geophys. 1964. Vol. 58. No. 11. P. 5-23.
https://doi.org/10.1007/BF00879136
18. Tate J., Daily W. Evidence of electro-seismic phenomena // Phys. Earth and Planet. Inter. 1989. Vol. 57. No. 1-2. P. 1-10.
https://doi.org/10.1016/0031-9201(89)90207-0
19. Thomas D. Geochemical precursor to seismic activity // Pure Appl. Geophys. 1988. Vol. 126. No. 2-4. P.241.
https://doi.org/10.1007/BF00878998
20. Yamada I., Masuda K., Mizutani H. Electromagnetic and acoustic emission associated with rock fracture // Phys. Eart and Planet. Inter. 1989. Vol. 57. No.1-2. P. 157-168.
https://doi.org/10.1016/0031-9201(89)90225-2
21. Uyeda S., Nagao T. and Kamogava M., Short-term earthquake prediction: current status of seismo-electromagnetics // Tectonophysics, 2009, 470, 205-213; doi:10.1016/j.tecto.2008.07.019.
https://doi.org/10.1016/j.tecto.2008.07.019
22. Zotov O. Guglielmi A., Sobisevich A. On magnetic precursors of earthquakes // Izvestiya, Physics of the Solid Earth, November 2013, Volume 49, Issue 6, pp 882-889.
https://doi.org/10.1134/S1069351313050145