Change in the zonal harmonic coefficient C20, Earth’s polar flattening, and dynamical ellipticity from SLR data

https://doi.org/10.23939/jgd2018.02.005
Received: October 16, 2018
1
Department of Higher Geodesy and Astronomy, Lviv Polytechnic National University
2
Lviv Polytechnic National University

We examine the change in the Earth’s second degree zonal harmonic coefficient derived from UTCSR SRL time series of  given (a) for the period from 1976 to 2017 as monthly solutions of the zonal coefficient  and (b) for the period from 1992 to 2017 as weekly solutions of the zonal coefficient  obtained via the eigenvalue-eigenvector problem and related to the principal axes system. The mean difference between the coefficients  or  given in various systems consists of the value  which is smaller than time variations in the coefficients  or . These time series of  were modeled by polynomials’ different degrees simultaneously with Fourier series with seasonal signals (for annual, semiannual, and quarter-year periods). Final representation was chosen at the epoch J2000 by means of the polynomial of second degree. Then the models for the time-dependent astronomical dynamical ellipticity  and the precession constant   with respect to the common value  were constructed using the model for the zonal coefficient  for the time-interval of about 25 yr. As the third step these time series of  were applied to determine a basic trend and periodic variations of the time-dependent Earth’s polar flattening from 1992 to 2017. A variation of the global dynamical and geometrical figure of the Earth was investigated and some important quantitative results were found: the polar flattening  is increasing within the considered 25 year time-interval. Therefore, this study aims to derive the variation of the global geometrical figure of the Earth, represented by the second-degree coefficients of time-series and the astronomical dynamical ellipticity . As a result, a special attention was given to the study of temporally varying components including seasonal variations of some fundamental parameters of the Earth.

1. Bourda, G., N. Capitaine (2004). Precession, nutation, and space geodetic determination of the Earth's variable gravity field. Astronomy & Astrophysics, 428(2), 691–702, doi:: 10.1051/0004-6361:20041533
https://doi.org/10.1051/0004-6361:20041533
2. Capitaine N., Wallace, P. T., & Chapront J. (2003). Expressions for IAU 2000 precession quantities. Astronomy & Astrophysics, 412(2), 567–586, doi: 10.1051/0004-6361:20031539
https://doi.org/10.1051/0004-6361:20031539
3. Capitaine N, Mathews, P. M., Dehant, V., Wallace, P. T., & Lambert, S. B. (2009). On the IAU 2000/2006 precession–nutation and comparison with other models and VLBI observations. Celestial Mechanics and Dynamical Astronomy, 103(2), 179–190, DOI 10.1007/s10569-008-9179-9
https://doi.org/10.1007/s10569-008-9179-9
4. Chen, W., & Shen, W. B. (2010). New estimates of the inertia tensor and rotation of the triaxial nonrigid Earth. Journal of Geophysical Research, 115: B12419. doi: 10.1029/2009JB007094
https://doi.org/10.1029/2009JB007094
5. Chen, W., Li, J. C., Ray, J., Shen, W. B., & Huang, C. L. (2015). Consistent estimates of the dynamic figure parameters of the earth. Journal of Geodesy, 89(2), 179–188, doi: 10.1007/s00190-014-0768-y
https://doi.org/10.1007/s00190-014-0768-y
6. Cheng, M., Ries, J. C., & Tapley, B. D. (2011). Variations of the Earth's figure axis from satellite laser ranging and GRACE, Journal of Geophysical Research: Solid Earth, 116, B01409, doi: 10.1029/2010JB000850.
https://doi.org/10.1029/2010JB000850
7. Cheng, M., Tapley, B. D., & Ries, J. C. (2013). Deceleration in the Earth's oblateness, Journal of Geophysical Research: Solid Earth, 118(2), 740–747, doi:10.1002/jgrb.50058.
https://doi.org/10.1002/jgrb.50058
8. Dehant, V., Arias, F., Bizouard, C., Bretagnon, P., Brzezinski, A., Buffett, B., Capitaine, N., & Zhu, S. (1998). Considerations concerning the non-rigid Earth nutation theory. Celestial Mechanics and Dynamical Astronomy, 72, 245–309.
https://doi.org/10.1023/A:1008364926215
9. Fukushima, T. (2003). A New Precession Formula. The Astronomical Journal, 126(1):494–534.
https://doi.org/10.1086/375641
10. Groten, E. (2004). Fundamental parameters and current (2004) best estimates of the parameters of common relevance to astronomy, geodesy, and geodynamics. Journal of Geodesy, 77, 724–797, doi:10.1007/s00190-003-0373-y
https://doi.org/10.1007/s00190-003-0373-y
11. Lambeck, K. (1971). Determination of the Earth's pole of rotation from laser range observations to satellites. Bulletin Géodésique, 101(1), 263–281.
https://doi.org/10.1007/BF02521878
12. Liu, J. C., & Capitaine, N. (2017). Evaluation of a possible upgrade of the IAU2006 precession. Astronomy & Astrophysics, 597, A83 (2017), doi: 10.1051/0004-6361/201628717
https://doi.org/10.1051/0004-6361/201628717
13. Marchenko, A. N. (1998). Parameterization of the Earth's gravity field. Point and line singularities. Lviv Astronomical and Geodetic Society, Lviv, 1998.
14. Marchenko, A. N. (2009). Current estimation of the Earth's mechanical and geometrical parameters. In: M.G. Sideris (ed.), Observing our Changing Earth, (pp. 473-481) International Association of Geodesy Symposia 133. Springer, Berlin, Heidelberg.
15. Marchenko, A. N., & Schwintzer, P. (2003) Estimation of the Earth's tensor of inertia from recent global gravity field solutions. Journal of Geodesy, 76(9-10), 495–509.
https://doi.org/10.1007/s00190-002-0280-7
16. Mathews, P. M., Herring, T. A., & Buffet, B. A. (2002). Modeling of nutation-precession: New nutation series for nonrigid Earth, and insights into the Earth's interior, Journal of Geophysical Research, 107(B4), doi: 10.1029/2001JB000390.
https://doi.org/10.1029/2001JB000390
17. Melchior P. (1978). The tides of the planet Earth. Pergamon.
18. Petit, G, & Luzum, B. (eds) (2010). IERS conventions (2010). IERS Technical Notes 36. Observatoire de Paris, Paris
19. Ries, J. C. (2017). ftp://ftp.csr.utexas.edu/pub/slr/degree_2/ (Private communication).
20. Rochester, M. G., & Smylie, D. E. (1974). On changes in the trace of the Earth's inertial tensor. Journal of Geophysical Research, 79(32), 4948–4951.
https://doi.org/10.1029/JB079i032p04948
21. Williams, J. G. (1994) Contributions to the Earth's obliquity rate, precession and nutation, Astronomical Journal, 108, 711–724.
https://doi.org/10.1086/117108
22. Yoder, C. F., Williams, J. G., Dickey, J. O., Schutz, B. E., Eanes, R. J., & Tapley, B. D. (1983). Secular variation of earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of earth rotation. Nature, 303(5920), 757–762.
https://doi.org/10.1038/303757a0