Simple epidemiology model for a non-immune disease with ordinary and resistant carriers

: pp. 37-42
Received: June 29, 2017
Danylo Halytskyi Lviv National Medical University
Institute for Condensed Matter Physics of the Nat. Acad. Sci. of Ukraine; Lviv Polytechnic National University

We consider the compartmental model for the non-immune disease with both ordinary and resistant carriers. The same infecting rate $\beta$ is assumed for both types of carriers, whereas the curing rates $\gamma$ and  $\gamma'$ for the ordinary and resistant carriers, respectively, are different. The conversion from an ordinary into resistant carrier takes place with the rate $\delta$. The stationary states for the model are evaluated and rewritten in a compact form using two reduced parameters that are combinations of initial four rates. The lower and upper bounds are given for both these parameters and the $3D$ plot for the fixed points is presented.

  1. Schwaber M. J.,  Navon-Venezia S., Kaye K. S., Ben-Ami R., Schwartz D., Carmeli Y. Clinical and Economic Impact of Bacteremia with Extended-Spectrum-Lactamase-Producing Enterobacteriaceae, Antimicrobial Agents and Chemotherapy. 50,  n.4, 1257–1262 (2006).
  2. Zapalac J. S., Billings K. R., Schwade N. D., Roland P. S. Suppurative Complications of Acute Otitis Media in the Era of Antibiotic Resistance. Archives of Otolaryngology–Head  & Neck Surgery. 128, n.6, 660–663 (2002).
  3. Roberts R. R., Hota B., Ahmad I., Scott R. D. I., Foster S. D., Abbasi F., Schabowski S., Kampe L. M., Ciavarella G. G., Supino M., Naples J., Cordell R., Levy S. B., Weinstein R. A. Hospital and Societal Costs of Antimicrobial-Resistant Infections in a Chicago Teaching Hospital: Implications for Antibiotic Stewardship. Clinical Infectious Diseases. 49, n.8, 1175–1184  (2009).
  4. Feshchenko Y., Dzyublik A., Pertseva T., Bratus E., Dzyublik Y., Gladka G., Morrissey I., Torumkuney D. Results from the Survey of Antibiotic Resistance (SOAR) 2011–13 in Ukraine. Journal of Antimicrobial Chemotherapy. 71, n.suppl 1, i63–i69 (2016).
  5. Cohen T., Dye C., Colijn C., Williams B., Murray M. Mathematical models of the epidemiology and control of drug-resistant TB.  Expert Review of Respiratory Medicine. 3, n.1, 67–79 (2009).
  6. Nieuwhof G., Conington J., Bishop S. C. A genetic epidemiological model to describe resistance to an endemic bacterial disease  in livestock: application to footrot in sheep. Genetics Selection Evolution. 41, n.1, 19 (2009).
  7. Zwerling A., Shrestha S., Dowdy D. W. Mathematical Modelling and Tuberculosis: Advances in Diagnostics and Novel Therapies. Advances in Medicine. 2015, 1–10 (2015).
  8. Fofana M. O., Shrestha S., Knight G. M., Cohen T., White R. G., Cobelens F., Dowdy D. W. A Multistrain Mathematical Model To Investigate the Role of Pyrazinamide in the  Emergence of Extensively Drug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy. 61, n.3, e00498–16 (2016).
  9. Spicknall I. H., Foxman B., Marrs C. F., Eisenberg J. N. S. A Modeling Framework for the Evolution and Spread of Antibiotic Resistance: Literature Review and Model Categorization. American Journal of Epidemiology. 178, n.4, 508–520 (2013).
  10. Feng Z. Applications of Epidemiological Models to Public Health Policymaking: The Role of Heterogeneity in Model Predictions. World Scientific Publishing Company (2014).
  11. Ilnytskyi J., Holovatch Y., Kozitsky Y., Ilnytskyi H. Computer simulations of a stochastic model for the non-immune disease spread. Bulletin of the National University "Lviv  Polytechnic". 800, 176–184 (2014).
  12. Ilnytskyi J., Haiduchok O., Ilnytskyi H. Modelling of diaseses dissemination with multi-resistant pathogens. Computer technologies of Printing. 34, n.2, 72–79 (2015), (in Ukrainian).
  13. Ilnytskyi H., Ilnytskyi J. Modelling of dynamics and clusterisation for the spread of the diseases with multi-drug resistant carriers. Scientifically Capacitant Technologies. 28, n.4, 296–3009 (2015), (in Ukrainian).
  14. Ilnytskyi J., Kozitsky Y., Ilnytskyi H., Haiduchok O. Stationary states and spatial patterning in anSISepidemiology model with implicit mobility. Physica A: Statistical Mechanics and its Applications. 461, 36–45 (2016).
Math. Model. Comput. Vol.4, No.1, pp.37-42 (2017)