Modeling of the effect of carbon dioxide desorption on carbon monoxide oxidation process on platinum catalyst surface

2018;
: pp. 27-33
https://doi.org/10.23939/mmc2018.01.027
Received: June 13, 2018

Math. Model. Comput. Vol. 5, No. 1, pp. 27-33 (2018)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

A two-dimensional mathematical model for carbon monoxide (CO) oxidation on the platinum (Pt) catalyst surface is investigated according to the Langmuir-Hinshelwood (LH) mechanism.   The effects of structural changes of the catalytic surface, the substrate temperature and desorption of the product of reaction (CO2) are taken into account.  It is shown that taking into account the finiteness of CO2 desorption, both the course of oxidation reaction and the stability region are only slightly affected.

  1. Dicke J., Erichsen P., Wolff J., Rotermund H. H. Reflection anisotropy microscopy: improved set-up and applications to CO oxidation on platinum. Surf. Sci. 462, 90–102 (2000).
  2. Baxter R. J., Hu P. Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116 (11), 4379–4381 (2002).
  3. von Oertzen A., Rotermund H. H., Nettesheim S. Diffusion of carbon monoxide and oxygen on Pt(110): experiments performed with the PEEM. Surf. Sci. 311 (3), 322–330 (1994).
  4. Patchett A. J., Meissen F., Engel W., Bradshaw A. M., Imbihl R. The anatomy of reaction diffusion fronts in the catalytic oxidation of carbon monoxide on platinum (110). Surf. Sci. 454 (1), 341–346 (2000).
  5. Kellogg G. L. Direct observations of the (1 × 2) surface reconstruction on the Pt(110) plane. Phys. Rev. Lett. 55, 2168–2171 (1985).
  6. Gritsch T., Coulman D., Behm R. J., Ertl G. Mechanism of the CO-induced 1×2→1×1 structural transformation of Pt(110). Phys. Rev. Lett. 63, 1086–1089 (1989).
  7. Imbihl R., Ladas S., Ertl G. The CO-induced 1 × 2 ↔ 1 × 1 phase transition of Pt(110) studied by LEED and work function measurements. Surf. Sci. 206, L903–L912 (1988).
  8. Krischer K., Eiswirth M., Ertl G. Oscillatory CO oxidation on Pt(110): Modeling of temporal self-organization. J. Chem. Phys. 96 (12), 9161–9172 (1992).
  9. Bär M., Eiswirth M., Rotermund H. H., Ertl G. Solitary-wave phenomena in an excitable surface-reaction. Phys. Rev. Lett. 69 (6), 945–948 (1992).
  10. Cisternas Y., Holmes P., Kevrekidis I. G., Li X. CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. J. Chem. Phys. 118 (7), 3312–3328 (2003).
  11. Bzovska I. S., Mryglod I. M. Surface patterns in catalytic carbon monoxide oxidation reaction. Ukr. J. Phys. 61 (2), 134–142 (2016).
  12. Pedersen T. M., Xue Li W., Hammer B. Structure and activity of oxidized Pt(110) and α-PtO2. Phys. Chem. Chem. Phys. 8 (13), 1566–1574 (2006).
  13. Ryzha I., Matseliukh M. Carbon monoxide oxidation on the Pt-catalyst: modelling and stability. Math. Model. Comput. 4 (1), 96–106 (2017).
  14. Connors K. A. Chemical Kinetics: The Study of Reaction Rates in Solution. New York, VCH Publishers (1990).
  15. Suchorski Y. Private comunication.