Mathematical model for carbon monoxide oxidation: influence of diffusion effects

: pp. 129-136
Received: March 10, 2019
Revised: May 19, 2019
Accepted: June 02, 2019
Lviv Polytechnic National University
Lviv Polytechnic National University

A two-dimensional mathematical model for carbon monoxide oxidation on the platinum catalyst surface is investigated according to the Langmuir--Hinshelwood mechanism.  This model takes into account the influence of diffusion effects on the course of reaction-diffusion processes.  It is established that the diffusion of adsorbed oxygen atoms can be neglected, and the structural changes of the catalyst surface have a significant influence on the character of oscillatory mode of reaction.

  1. Krischer K., Eiswirth M., Ertl G.  Oscillatory CO oxidation on Pt(110): Modeling of temporal self-organization.  J. Chem. Phys. 96 (12), 9161--9172 (1992).
  2. Ziff R. M., Gulari E., Barshad Y.  Kinetic phase transitions in an irreversible surface-reaction model.  Phys. Rev. Lett. 56 (24), 2553--2556 (1986).
  3. Bär M., Zülicke C., Eiswirth M., Ertl G.  Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics.  J. Chem. Phys. 96 (11), 8595--8604 (1992).
  4. Bzovska I. S., Mryglod I. M.  Surface Patterns in Catalytic Carbon Monoxide Oxidation Reaction.  Ukr. J. Phys. 61 (2), 134--142 (2016).
  5. Qiao L., Li X., Kevrekidis I. G., Punckt C., Rotermund H. H.  Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation.  Phys. Rev. E. 77, 036214 (2008).
  6. Cisternas Y., Holmes P., Kevrekidis I. G., Li X.  CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models.  J. Chem. Phys. 118 (7), 3312--3328 (2003).
  7. Bär M., Gottschalk N., Eiswirth M., Ertl G.  Spiral waves in a surfacereaction: model calculations.  J. Chem. Phys. 100 (2), 1202--1214 (1994).
  8. Pavlenko N.  CO-activator model for reconstructing Pt(100) surfaces: Local microstructures and chemical turbulence.  Phys. Rev. E. 77, 026203--1--10 (2008).
  9. Kostrobij P., Ryzha I., Markovych B.  Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure.  Mathematical Modeling and Computing. 5 (2), 158--168 (2018).
  10. Langmuir I.  The mechanism of the catalytic action of platinum in the reactions $2CO + O2= 2CO2$ and $2H2+O2= 2H2O$.  Trans. Faraday Soc. 17, 621--654 (1922).
  11. Imbihl R., Ertl G.  Oscillatory Kinetics in Heterogeneous Catalysis.  Chem. Rev. 95 (3), 697--733 (1995).
  12. Gritsch T., Coulman D., Behm R. J., Ertl G.  Mechanism of the CO-induced $(1x2)-(1x1)$ structural transformation of Pt(110).   Phys. Rev. Lett. 63 (10), 1086--1089 (1989).
  13. Ladas S., Imbihl R., Ertl G.  Microfacetting of a Pt(110) surface during catalytic CO oxidation.  Surf. Science. 197 (1--2), 153--182 (1988).
  14. Ladas S., Imbihl R., Ertl G.  Kinetic oscillations and facetting during the catalytic CO oxidation on Pt(110).  Surf. Science. 198 (1--2), 42--68 (1988).
  15. von Oertzen A., Rotermund H. H., Nettesheim S.  Diffusion of carbon monoxide and oxygen on Pt(110): experiments performed with the PEEM.  Surf. Science. 311 (3), 322--330 (1994).
  16. van Kampen N. G.  Stohasticheskie processy v fizike i himii.  Vysshaja shkola, Moskva (1990), (in Russian).
  17. Bzovska I. S., Mryglod I. M.  Chemical oscillations in catalytic CO oxidation reaction.  Condens. Matter Phys. 13 (3), 34801:1--5 (2010).
  18. Connors K. A.  Chemical Kinetics: The Study of Reaction Rates in Solution.  VCH Publishers, New York (1990).
  19. Kuchling H.  Physik Nachschlagebücher für Grundlagenfächer.  VEB Fachbuchverlag, Leipzig (1973), (in German).
  20. Patchett A. J., Meissen F., Engel W.,  Bradshaw A. M., Imbihl R.  The anatomy of reaction diffusion fronts in the catalytic oxidation of carbon monoxide on platinum (110).  Surf. Science. 454 (1), 341--346 (2000).
  21. Kostrobij P., Ryzha I.  Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface.  Chem. Chem. Technol. 12 (4), 451--455 (2018).
Math. Model. Comput. Vol.6, No.1, pp.129-136 (2019)