The calculation of photoionization cross-section of negative hydrogen ions in the Born approximation

: pp. 125–139
Received: March 16, 2020
Revised: March 21, 2020
Accepted: April 16, 2020
Ivan Franko National University of Lviv
Ivan Franko National University of Lviv
Ivan Franko National University of Lviv
Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine

It is shown that the two-electron wave function of the system "hydrogen atom + photoelectron" in the Born approximation provides high accuracy of the photoionization process cross-section calculation of negative hydrogen ion.  The partial cross-sections, which correspond to different ``reaction ns-channels'' in the scale of photoelectron energy and the scale of wavelengths are calculated.  The comparisons with the results of other authors which obtained by other methods are performed.

  1. Wildt R.  Negative ions of hydrogen and the opacity of stellar atmospheres.  Astrophysical Journal. 90, 611–620 (1939).
  2. Wildt R.  The continuous spectrum of Stellar atmoospheres consisting only of atoms and negative ions of hydrogen.  Astrophysical Journal. 93, 47–51 (1941).
  3. Chandrasekhar S.  On the continuous absorption coefficient of the negative hydrogen ion. II. Astrophysical Journal. 102, 395–401 (1945).
  4. Chandrasekhar S., Breen F. H.  On the continuous absorption coefficient of the negative hydrogen ion. III. Astrophysical Journal. 104, 430–445 (1946).
  5. John T. L., Seaton M. J.  The photodetachment of $H^-$.  Monthly Notices of the Royal Astronomical Society. 121 (1), 41–47 (1960).
  6. Smith S. J., Burch D. S.  Relative Measurement of the Photodetachment cross-section for $H^-$.  Phys. Rev. 116 (5) 1125–1131 (1959).
  7. Vavrukh M. V., Vasil'eva I. E., Stelmakh O. M., Tyshko N. L.  Continuous Absorption and Depression in the Solar Spectrum at Wavelengths from 650 to 820 nm.  Kinemat. Phys. Celest. Bodies. 32 (3), 129–144 (2016).
  8. Neckel H., Labs D.  The solar radiation between 3300 and 12500 \AA.  Solar Physics. 90 (2), 205–258 (1984).
  9. Burlov-Vasil'ev K. A., Vasil'eva I. E., Matveev Yu. B.  New measurments of the absolute spectral energy distribution of Solar radiations in the range $\lambda\lambda$ 650 – 1070 nm.  Kinematics and Physics of Celestial Bodies. 12 (3), 75–91 (1996).
  10. Geltman S.  The bound-free absorption coefficient of the hydrogen negative ion.  Astrophysical Journal. 136 (3), 935–945 (1962).
  11. Broad J. T.  One- and two-electron photoejection from $H^-$: A multichannel J-matrix calculation.  Phys. Rev. A. 14 (6), 2159–2173 (1976).
  12. Vavrukh M. V., Stelmakh O. M.  The cross-sections of the main processes that forms the continuous absorption coefficient in the photosphere of Sun-like stars.  Journal of Physical Studies. 17 (4), 4902 (2013).
  13. Stewart A. L.  A perturbation-variation study of photodetachment from $H^-$.  J. Phys. B: Atom. Molec. Phys. 11 (22), 3851–3860 (1978).
  14. Wishart A. W.  The bound-free photodetachment cross-section of $H^-$.  J. Phys. B: Atom. Molec. Phys. 12 (21), 3511–3519 (1979).
  15. Tweed R. J.  Correlated wavefunctions for helium-like atomic systems.  J. Phys. B. 5 (4), 810–819 (1972).
  16. Hart J. F., Herzberg G.  Twenty-Parameter Eigenfunction and Energy Values of the Ground States of the He and He-Like ions.  Phys. Rev. 106 (1), 79–82 (1957).
  17. Pekeris C. L.  $1^1S$, $2^1S$ and $2^3S$ States of $H^-$ and of He.  Phys. Rev. 126 (4), 1470–1476 (1962).
  18. Vavrukh M. V., Kostrobij P. P., Markovych B. M.  Reference system approach in the theory of many-electrons systems.  Rastr-7, Lviv (2017), (in Ukrainian).
  19. Abramowitz M., Stegun I. A.  Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables.  Government Printing Office: Washington (1972).
Mathematical Modeling and Computing, Vol. 7, No. 1, pp. 125–139 (2020)