Modeling of optimized cascade of quantum cascade detector operating in far infrared range

2020;
: pp. 186–195
https://doi.org/10.23939/mmc2020.01.186
Received: March 23, 2020
Accepted: May 11, 2020
1
Yuriy Fedkovych Chernivtsi National University
2
Yuriy Fedkovych Chernivtsi National University
3
Yuriy Fedkovych Chernivtsi National University
4
Yuriy Fedkovych Chernivtsi National University

Using the theory for electron energy spectrum and oscillator strengths of inter-subband quantum transitions, developed in the model of position-dependent effective mass and rectangular potentials, the geometrical design for the compact cascade of a quantum cascade detector (with a two-well active region) operating in far infrared range is proposed.  The extractor of the cascade is optimized in such a way that the energy steps of its phonon ladder resonate with optical phonon energy, providing effective phonon-assisted tunneling of electrons between the active regions of  cascades.  It is shown that increasing thickness of the barrier between the wells of active region, causes the broadening of detector absorption band due to the bigger distance between energy levels in anti-crossing.

  1. Lei W., Jagadish C.  Lasers and photodetectors for mid-infrared 2-3 μm applications.  J. Appl. Phys. 104 (9), 091101 (2008).
  2. Tournie E., Cerutti L.  Mid-infrared Optoelectronics.  Woodhead Publishing (2019).
  3. Beeler M., Trichas E., Monroy E.  III-nitride semiconductors for intersubband optoelectronics: a review.  Semicond. Sci. Technol. 28 (7), 074022 (2013).
  4. Gunapala S., Bandara S., Liu J., Mumolo J., Rafol S., Ting D. Z., Soibel A., Hill C.  Quantum Well Infrared Photodetector Technology and Applications.  IEEE J. Sel. Top. Quantum Electron. 20 (6), 3802312 (2014).
  5. Levine B., Choi K., Bethea C., Walker J., Malik R.  New 10 μm infrared detector using intersubband absorption in resonant tunneling GaAIAs superlattices.  Appl. Phys. Lett. 50 (16), 1092–1094, (1987).
  6. Gendron L., Carras M., Huynh A., Ortiz V.  Quantum cascade photodetector.  Appl. Phys. Lett. 85 (4), 2824–2826 (2004).
  7. Schneider H., Liu H.  Quantum Well Infrared Photodetectors.  Physics and Applications. (2006).
  8. Gueriaux V., Nedelcu A., Bois Ph.  Double barrier strained quantum well infrared photodetectors for the 3-5 μm atmospheric window.  J. Appl. Phys. 105 (11), 114515 (2009).
  9. Kaya Ya., Ravikumar A., Chen G., Tamargo M. C., Shen A., Gmachl C.  Two-band ZnCdSe/ZnCdMgSe quantum well infrared photodetector.  AIP Advances. 8 (7), 075105 (2018).
  10. Hofstetter D., Schad S., Wu H., Schaff W., Eastman L.  GaN/AlN-based quantum-well infrared photodetector for 1.55 μm.  Appl. Phys. Lett. 83 (3),  572–574 (2003).
  11. Mensz P., Dror B., Ajay A., Bougerol C., Monroy E., Orenstein M., Bahir G.  Design and implementation of boundto-quasibound GaN/AlGaN photovoltaic quantum well infrared photodetectors operating in the short wavelength infrared range at room temperature.  J. Appl. Phys. 125 (17), 174505 (2019).
  12. Giorgetta F., Baumann E., Graf M., Yang Q., Manz C., Kohler K., Beere H. E., Ritchie D. A., Linfield E., Davies A. G., Fedoryshyn Yu., Jackel H., Fischer M., Faist J., Hofstetter D.  Quantum Cascade Detectors.  Journal of quantum electronics. 45 (8), 1039–1052 (2009).
  13. Reininger P., Zederbauer T., Schwarz B., Detz H., MacFarland D., Andrews A. M., Schrenk W., Strasser G.  InAs/AlAsSb based quantum cascade detector.  Appl. Phys. Lett. 107 (8), 081107 (2015).
  14. Liu J., Zhou Y., Zhai S., Liu F., Liu S., Zhang J., Zhuo N., Wang L., Wang Z.  High-frequency very long wave infrared quantum cascade detectors.  Semicond. Sci. Technol. 33 (12), 125016 (2018).
  15. Sakr S., Giraud E., Dussaigne A., Tchernycheva M., Grandjean N., Julien F. H.  Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7 μm.  Appl. Phys. Lett. 100 (18), 181103 (2012).
  16. Sakr S., Crozat P., Gacemi D., Kotsar Y., Pesach A., Quach P., Isac N., Tchernycheva M., Vivien L., Bahir G., Monroy E., Julien F. H.  GaN/AlGaN waveguide quantum cascade photodetectors at 1.55 m with enhanced responsivity and 40 GHz frequency bandwidth.  Appl. Phys. Lett. 102 (1), 011135 (2013).
  17. Hofstetter D., Giorgetta F., Baumann E., Yang Q., Manz C., Köhler K.  Midinfrared quantum cascade detector with a spectrally broad response.  Appl. Phys. Lett. 93 (22), 221106 (2008).
  18. Zhou X., Li N., Lu W.  Progress in quantum well and quantum cascade infrared photodetectors in SITP.  Chin. Phys. B. 28 (2), 027801 (2019).
  19. Nelson D., Miller R., Kleinman D.  Band nonparabolicity effects in semiconductor quantum wells.  Phys. Rev. B. 35 (14), 7770–7773 (1987).
  20. BenDaniel D., Duke C.  Space-Charge Effects on Electron Tunneling.  Phys. Rev. 152 (2),  683–692 (1966).
  21. Harrison P., Valavanis A.  Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures.  Wiley, West Sussex, United Kingdom (2016).
  22. Tkach M., Seti Ju., Voitsekhivska O.  Spectrum of electron in quantum well within the linearly-dependent effective mass model with the exact solution.  Superlattice Microst. 109, 905–914 (2017).
  23. Davydov A.  Theory of solids.  Nauka, Moscow (1976).
  24. Li L., Zhou X., Tang Z., Zhou Y.,Zheng Y., Li N., Chen P., Li Z., Lu W.  Long wavelength infrared quantum cascade detector with a broadband response.  J. Phys. D: Appl. Phys. 51 (37), 37LTO1 (2018).
  25. Tkach M., Seti Ju., Grynyshyn Y., Voitsekhivska O.  Dynamic Conductivity of Electrons and Electron Phonon Interaction in Open Three-Well Nanostructures.  Acta Phys. Pol. A. 128 (3), 343–352 (2015).
Mathematical Modeling and Computing, Vol. 7, No. 1, pp. 186–195 (2020)