Method of integral equations in the polytropic theory of stars with axial rotation. I. Polytropes n=0 and n=1

2021;
: pp. 338–358
https://doi.org/10.23939/mmc2021.02.338
Received: November 07, 2020
Revised: April 19, 2021

Mathematical Modeling and Computing, Vol. 8, No. 2, pp. 338–358 (2021)

1
Ivan Franko National University of Lviv
2
Ivan Franko National University of Lviv

Calculations of characteristics of stars with axial rotation in the frame of polytropic model are based on the solution of mechanical equilibrium equation – differential equation of second order in partial derivatives.  Different variants of approximate determinations of integration constants are based on traditional in the theory of stellar surface approximation, namely continuity of gravitational potential in the surface vicinity.  We proposed a new approach, in which we used simultaneously differential and integral forms of equilibrium equations.  This is a closed system and allows us to define in self-consistent way integration constants, the polytrope surface shape and distribution of matter over volume of a star.  With the examples of polytropes n=0 and n=1, we established the existence of two rotation modes (with small and large eccentricities).  It is proved that the polytrope surface is the surface of homogeneous rotational ellipsoid for the case n=0.  The polytrope characteristics with n=1 in different approximations were calculated as the functions of angular velocity.  For the first time it has been calculated the deviation of polytrope surface at fixed value of angular velocity from the surface of associated rotational ellipsoid.

  1. McNally D.  The distribution of angular momentum among main sequence stars.  The  Observatory. 85, 166–169 (1965).
  2. Smith F. G.  Pulsars. Cambridge University Press (1977).
  3. Lane H.  On the Theoretical Temperature of the Sun under the Hypothesis of a gaseous mass Maintining Its Volume by Its Internal Heat and Depending on the Law of Gases Known to Terrestrial Experiment.  American Journal of Science. s2-50 (148) , 57–74 (1870).
  4. Emden R.  Gaskugeln: Anwendungen der mechanischen Wärmetheorie auf kosmologische und meteorologische Probleme.  Leipzig, Berlin (1907), (in German).
  5. Fowler R. H.  Emden's equation: The solutions of Emden's and similar differential equations.  MNRAS. 91 (1), 63–91 (1930).
  6. Eddington A. S.  The Internal Constitution of the Stars.  Cambridge University Press (1926).
  7. Milne E. A.  The equilibrium of a rotating star.  MNRAS. 83 (3), 118–147 (1923).
  8. Chandrasekhar S.  The Equilibrium of Distorted Polytropes. I. The Rotational Problem.  MNRAS. 93 (5), 390–406 (1933).
  9. James R. A.  The Structure and Stability of Rotating Gas Masses.  Astrophysical Journal. 140, 552–582 (1964).
  10. Kopal Z.  Bemerkung zur Theorie der rotierenden Polytropen.  Zeitschrift für Astrophysik. 14, 135–138 (1937), (in German).
  11. Williams P. S.  Analytical Solutions for the Rotating Polytrope N=1.  Astrophysics and Space Science. 143, 349-358 (1988).    
  12. Monaghan J. J., Roxburgh I. W.  The Structure of Rapidly Rotating Polytropes.  MNRAS. 131 (1), 13–22 (1965).
  13. Caimmi R.  Emden-Chandrasekhar Axisymmetric Solid-Body Rotating Polytropes. Part One. Exact Solutions for the Special Cases N=0, 1 and 5.  Astrophysics and Space Science. 71, 415–457 (1980).
  14. Vavrukh M. V., Tyshko N. L., Dzikovskyi D. V., Stelmakh O. M.  The self-consistent description of stellar equilibrium with axial rotation.  Mathematical Modeling and Computing. 6 (2), 153–172 (2019).
  15. Vavrukh M. V., Tyshko N. L., Dzikovskyi D. V.  New approach in the theory of stellar equilibrium with axial rotation.  Journal of Physical Studies. 24 (3), 3902-1–3902-20 (2020).
  16. Vavrukh M. V., Dzikovskyi D. V.  Exact solution for the rotating polytropes with index unity, its approximations and some applications.  Contrib. Astron. Obs. Skalnaté Pleso. 50 (4), 748–771 (2020).
  17. Vavrukh M. V., Smerechynskyi S. V., Tyshko N. L.  The microscopic parameters and the macroscopic characteristics of real degenerate dwarfs.  Journal of Physical Studies. 14 (4), 4901-1–4901-16 (2010).
  18. Vavrukh M. V., Dzikovskyi D. V., Smerechynskyi S. V.  Consideration of the competing factors in calculations of the characteristics of non-magnetic degenerate dwarfs.  Ukr. J. Phys. 63 (9), 777–789 (2018).
  19. Kong D., Zhang K., Schubert G.  An exact solution for arbitrarily rotating gaseous polytropes with index unity.  MNRAS. 448 (1), 456–463 (2015).
  20. Knopik J., Mach P., Odrzywołek A.   The shape of a rapidly rotating polytrope with index unity.  MNRAS. 467 (4), 4965–4969 (2017).
  21. Shapiro S. L., Teukolsky S. A.  Black Holes, White Dwarfs and Neutron Stars.  Cornell University, Ithaca, New York (1983).
  22. Chandrasekhar S.  An Introduction to the Study of Stellar Structure.  University of Chicago Press, Chicago (1939).
  23. Lyttleton R. A.  The Stability of Rotating Liquid Masses.  Cambridge University Press, Cambridge (1953).
  24. Abramowitz M., Stegun I. A.  Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables.  Government Printing Office Washington (1972).
  25. Duboshin G. N.  Celestial Mechanics, Basic Problems and Methods.  Nauka, Moscow (1968).