PROBABILITY OF SIMULTANEOUS MULTIPLE LEAKAGES AT SECTIONS OF WATER NETWORKS IN THE PROCESS OF LOCALIZATION OF HIDDEN WATER LEAKS

2023;
: 72-83
https://doi.org/10.23939/jtbp2023.01.072
Received: March 20, 2023
Revised: April 24, 2023
Accepted: May 02, 2023
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

Hidden leaks from water supply networks account for 50% to 90% of total leakage losses. The presence of two or more simultaneous leaks in a section of the water supply network significantly reduces the accuracy of locating hidden leaks. The method of independent Poisson events and the hypothesis of stationarity, absence of consequences, and ordinariness of leaks are used for the probabilistic description of the problem of multi-leakage in water supply networks. The analytical dependence of the probability of multiple leakages on the specific annual emergency rate of the site, its length and the duration of the localization and repair period is obtained. A generalized semi-empirical equation was obtained for estimating the maximum permissible duration of the localization and repair period depending on the annual emergency rate of the site for a given multi-leakage probability.

Anfinsen, H., & Aamo, O.M. (2022). Leak detection, size estimation and localization in branched pipe flows. Automatica, 140, 110213. doi:10.1016/j.automatica.2022.110213
https://doi.org/10.1016/j.automatica.2022.110213
Babbitt H.E., Amsbary F.C., Gwinn D.R. (1920). The detection of leaks in underground pipes [with discussion]. Journal (American Water Works Association), 7(4), 589-595. doi:10.1002/j.1551-8833.1920.tb12084.x
https://doi.org/10.1002/j.1551-8833.1920.tb12084.x
Bakhtawar, B., & Zayed, T. (2021). Review of water leak detection and localization methods through hydrophone technology. Journal of Pipeline Systems Engineering and Practice, 12(4), 03121002. doi:10.1061/(ASCE)PS.1949-1204.0000574
https://doi.org/10.1061/(ASCE)PS.1949-1204.0000574
Beuken, R.H.S., Lavooij, C.S.W., Bosch, A., Schaap, P.G. (2008). Low leakage in the Netherlands confirmed. In Water Distribution Systems Analysis Symposium, 2006 (pp. 1-8). doi:10.1061/40941(247)174
https://doi.org/10.1061/40941(247)174
Bykerk, L., & Valls Miro, J. (2022). Vibro-acoustic distributed sensing for large-scale data-driven leak detection on urban distribution mains. Sensors, 22(18), 6897. doi:10.3390/s22186897
https://doi.org/10.3390/s22186897
Chan, T.K., Chin, C.S., Zhong, X. (2018). Review of current technologies and proposed intelligent methodologies for water distributed network leakage detection. IEEE Access, 6, 78846-78867. doi:10.1109/access.2018.2885444
https://doi.org/10.1109/ACCESS.2018.2885444
Duan H.F., Pan B., Wang M., Chen L., Zheng F., Zhang, Y. (2020). State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management. Journal of Water Supply: Research and Technology − AQUA, 69(8), 858−893. doi:10.2166/aqua.2020.048.
https://doi.org/10.2166/aqua.2020.048
Elandalibe, K., Jbari, A., Bourouhou, A. (2015). Application of cross-correlation technique for multi leakage detection. In 2015 Third World Conference on Complex Systems (WCCS) (pp. 1-4). IEEE. doi: 10.1109/icocs.2015.7483243
https://doi.org/10.1109/ICoCS.2015.7483243
Jin, T., & Zhou, Z.Y. (2014). Multiple Leakage Detection and Localization Method Based on Bayesian Theory and Genetic Algorithm. In Applied Mechanics and Materials (Vol. 635, pp. 924-927). Trans Tech Publications Ltd. doi:10.4028/www.scientific.net/AMM.635-637.924
https://doi.org/10.4028/www.scientific.net/AMM.635-637.924
Kartashov, M.V. (2008). Imovirnist, Protsesy, Statystyka. Kyiv: VPTs "Kyivskyi Universytet". https://probability.knu.ua/userfiles/kmv/VPS_Pv.pdf (in Ukrainian).
Kwietniewski, M., Świercz, P., & Chudzicki, J. (2022). Modern methods for monitoring water leakages in water networks. Studia Geotechnica et Mechanica, 44(1), 53−65. doi:10.2478/sgem-2022-0001
https://doi.org/10.2478/sgem-2022-0001
Lah, A.A., Dziyauddin, R.A., & Yusoff, N.M. (2018). Localization techniques for water pipeline leakages: A review. In 2018 2nd International Conference on Telematics and Future Generation Networks (TAFGEN) (pp. 49-54). doi: 10.1109/tafgen.2018.8580467.
https://doi.org/10.1109/TAFGEN.2018.8580467
Liemberger, R., & Wyatt, A. (2019). Quantifying the global non-revenue water problem. Water Supply, 19(3), 831-837. doi:10.2166/ws.2018.129
https://doi.org/10.2166/ws.2018.129
Mamlook, R., & Al-Jayyousi, O. (2003). Fuzzy sets analysis for leak detection in infrastructure systems: a proposed methodology. Clean Technologies and Environmental Policy, 6(1), 26-31.doi:10.1007/s10098-003-0209-8
https://doi.org/10.1007/s10098-003-0209-8
Mohammed, E. G., Zeleke, E. B., Abebe, S. L. (2021). Water leakage detection and localization using hydraulic modeling and classification. Journal of Hydroinformatics, 23(4), 782-794. doi:10.2166/hydro.2021.164
https://doi.org/10.2166/hydro.2021.164
Natsionalna Dopovid pro Yakist Pytnoi Vody ta Stan Pytnoho Vodopostachannia v Ukraini za 2020 Rik. (2021). Ministerstvo Rozvytku Hromad i Terytorii Ukrainy. Retrieved from: https://www.minregion.gov.ua/wp-content/uploads/2022/01/2021_naczdopovid... (date: 11.03.2023) (in Ukrainian).
Negm, A., Ma, X., & Aggidis, G. (2023). Review of leakage detection in water distribution networks. In IOP Conference Series: Earth and Environmental Science, 1136(1), 012052. doi 10.1088/1755-1315/1136/1/012052
https://doi.org/10.1088/1755-1315/1136/1/012052
Nugroho, W., Iriawan, N., Utomo, C. (2021). Determining physical and operational factors influencing pipeline leakage location pattern in water distribution networks using spatial Poisson point process. In IOP Conference Series: Materials Science and Engineering, 1098(2), 022051). doi 10.1088/1757-899x/1098/2/022051
https://doi.org/10.1088/1757-899X/1098/2/022051
Puust, R., Kapelan, Z., Savic, D.A., Koppel, T. (2010). A review of methods for leakage management in pipe networks. Urban Water Journal, 7(1), 25−45. doi:10.1080/15730621003610878
https://doi.org/10.1080/15730621003610878
Rak, J.R., Sypień, Ł. (2013). Analiza strat wody w wodociągu miasta Jasła. Czasopismo Inżynierii Lądowej, Środowiska i Architektury, 60(3), 5−18. (in Polish) https://docplayer.pl/36797434-Analiza-strat-wody-w-wodociagu-miasta-jasl...
https://doi.org/10.7862/rb.2013.33
Remeshevska, I., Trokhymenko, G., Gurets, N., Stepova, O., Trus, I., & Akhmedova, V. (2021). Study of the ways and methods of searching water leaks in water supply networks of the settlements of Ukraine. Ecological Engineering & Environmental Technology, 22. doi:10.12912/27197050/137874
https://doi.org/10.12912/27197050/137874
Sekhavati, J., Hashemabadi, S. H., & Soroush, M. (2022). Computational methods for pipeline leakage detection and localization: A review and comparative study. Journal of Loss Prevention in the Process Industries, 104771. doi: 10.1016/j.jlp.2022.104771
https://doi.org/10.1016/j.jlp.2022.104771
SIWA Leak Control. BIT GMBH. Presentation of a hidden leakage localization system as an efficient tool for reduction of water losses. (2015). Ecoforum Lviv - 2015.  Retrieved from: https://www.slideshare.net/EcoforumLviv/siwa-leak-control (date: 11.03.2023).
Vodna Stratehiia Ukrainy na Period do 2050 Roku. (2022). Retrieved from https://zakon.rada.gov.ua/laws/show/1134-2022-%D1%80#Text (in Ukrainian).
Water Efficiency for Water Suppliers. US Environmental Protection Agency. Retrieved from: https://www.epa.gov/sustainable-water-infrastructure/water-efficiency-wa... (date: 11.03.2023).
Zamikhovskyi, L.M., & Shtaier, L.O. (2013). Kontrol Vytokiv z Mahistralnykh ta Tekhnolohichnykh Truboprovodiv: Monohrafiia. Ivano-Frankivsk: IFNTUNH (in Ukrainian).