Game model of decision-making in hierarchical systems

2017;
: pp. 111 - 120
Authors: 
Kravets P. A

Computer Science Department, Lviv Polytechnic National University, 12, S. Bandery Str., Lviv, 79013, Ukraine, krpo@i.ua

Game model of decision-making in hierarchical systems functioning in the conditions of aprioristic uncertainty it is constructed. The adaptive recurrent method and algorithm of stochastic game solving are developed. Computer modelling of stochastic game of decision-making in hierarchical system with structure of a binary tree is executed. Influence of parameters on convergence of a game method is investigated.

1. Mesarovich M. Teoriia ierarkhicheskikh mnohourovnevykh sistem, M. Mesarovich, D. Moko, Ia. Takakhara, M., Mir, 1973, 334 p.

2. Voronin A. A. Optimalnye ierarkhicheskie struktury, A. A. Voronin, S. P. Mishin, M., IPU RAN, 2003, 210 p.

3. Sharapov O. D. Ekonomichna kibernetyka: tutorial, O. D. Sharapov, V. D. Derbentsev, D. Ye. Semonov, K., KNEU, 2004, 231 p.

4. Saati T. Priniatie reshenii. Metod analiza ierarkhii, T. Saati, M., Radio i sviaz,1993, 320 p.

5. Teoriia i praktyka pryiniattia upravlinskykh rishen, A. S. Krupnyk, K. O. Lynov, Ye. M. Nuzhnyi, O. M. Rudyk, K., Vydavnychyi dim "Prostir", 2007, 119 p.

6. Katrenko A. V. Teoriia pryiniattia rishen : pidruchnyk z hryfom MON, A. V. Katrenko, V. V. Pasichnyk, V. P. Pasko, K. : Vydavnycha hrupa BHV, 2009, 448 p.

7. Kononenko A. F. Priniatie reshenii v usloviiakh neopredelennosti, A. F. Kononenko, A. D. Khalezov, V. V. Chumakov, M., VTs AN SSSR, 1991, 196 p.

8. Burkov V. N. Teoriia aktivnykh sistem: sostoianie i perspektivy, V. N. Burkov, D. A. Novikov, M. Sinteh, 1999, 128 p.

9. Aizerman M. A. Vybor variantov: osnovy teorii, M. A. Aizerman, V. F. Aleskerov, M., Nauka, 1990, 240 p.

10. Danilov V. I. Mekhanizmy hruppovoho vybora, V. I Danilov, A. I. Sotskov, M., Nauka, 1991, 172 p.

11. Neiman Dzh. Teoriia ihr i ekonomicheskoe povedenie, Dzh. Neiman, O. Morhenshtern, M., Nauka, 1970, 708 p.

12. Hermeier Iu. B. Ihry s neprotivopolozhnymi interesami, M., Nauka, 1976, 328 p.

13. Horelik V. A., Kononenko A. F. Teoretiko-ihrovye modeli priniatiia reshenii v ekoloho-ekonomicheskikh sistemakh. M., Radio i sviaz, 1982, 144 p.

14. Kukushkin N. S. Teoriia neantahonisticheskikh ihr, N. S. Kukushkin, V. V. Morozov, M., MHU, 1984, 104 p.

15. Vorobev N. N. Osnovy teorii ihr. Beskoalitsionnye ihry, N. N. Vorobev, M., Nauka, 1984, s, 496 p.

16. Mulen E. Teoriia ihr s primerami iz matematicheskoi ekonomiki, E. Mulen, M., Mir, 1985, 200 p.

17. Hubko M. V. Teoriia ihr v upravlenii orhanizatsionnymi sistemami, M. V. Hubko, D. A. Novikov, M., Sinteh,2002, 148 p.

18. Novikov D. A. Ihry i seti, D. A. Novikov, Matematicheskaia teoriia ihr i ee prilozheniia, V. 2, Iss. 1, 2010, P. 107–124.

19. Epshtein H. L. Teoriia ihr: tutorial – M., M HU PS (MIIT), 2014, 114 p.

20. Domanskii V. K. Stokhasticheskie ihry, V. K. Domanskii, Matematicheskie voprosy kibernetiki, 1988, No 1, P. 26–49.

21. Fudenberg D. The Theory of Learning in Games, D. Fudenberg, D. K. Levine, Cambridge, MA: MIT Press, 1998, 292 pp.

22. Nazin A. V. Adaptivnyi vybor variantov, A. V. Nazin, A. S. Pozniak, M., Nauka, 1986, 288 p.

23. Weiss G. Multiagent Systems. A Modern Approach to Distributed Artificial Intelligence, G. Weiss, editor, Springer Verlag, Berlin, 1996, 643 p.

24. Wooldridge M. An Introduction to Multiagent Systems, M. Wooldridge, John Wiley & Sons, 2002, 366 p.

25. Hranichin O. N. Vvedenie v metody stokhasticheskoi approksimatsii i otsenivaniia: tutorial, O. N. Hranichin, SPb., Izd-vo SPb. un-ta, 2003, 131 p.

Kravets P. O. Game model of decision-making in hierarchical systems / P. O. Kravets // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Informatsiini systemy ta merezhi. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2017. — No 872. — P. 111–120.