composites

Synthesis of Biomass Waste Derived Activated Carbon-NBR Composites for Automobile Application

This paper reports on usability of activated carbon obtained from areca nut shell, coconut shell, and coconut leaves as a filler to prepare NBR based composite for automobile based application. The carbon was activated by phosphoric acid (H3PO4) as dehydrating agent. The stoichiometric ratio of biomass and phosphoric acid was found to be 3:1 for the batch size of 300 g. As compared to commercially available carbon filler, the activated carbon derived from biomass waste responded better to the petrol swelling test.

Modified composites based on poly(ethylene-vinyl acetate) and crumb rubber

The blocked macrodiisocyanates (MDI) based on oligodienes with hydroxyl groups and a blocking agent p-quinonedioxyme have been synthesized. The effect of the modifier (blocked MDI) on the physical mechanical characteristics and structural features of composites based on the dispersed crumb rubber and functionalized poly(ethylene-vinyl acetate) were investigated. The effective concentration of the blocked MDI and its influence on mechanical and deformation characteristics of composites were studied.

Determination of porosity of materials by means of metallographic methods with a help of application programs

Theoretical and experimental investigations of porous permeable materials of saponite-titanium and saponite-aluminium composites are presented in this work. their qualitative and quantitative indexes are determined in PhotoM and Smart-eye applied programs. Metallographic images are presented by combination of structural components with different proportions: phases, shape and color, grain boundaries.

Combustion Properties of Several Species of WoodCombustion Properties of Several Species of Wood

Mesoporous niobium oxide (Nb2O5) was synthesized and treated with naphthalene sulfonated formaldehyde resin (NSF) solution. These new inorganic-organic hybrid composites were characterized by different techniques. Results indicated that the pores of the nanostructured material are filled with the NSF resin with changes in the morphology and thermal properties of the mesoporous Nb2O5

Light Curable Dental Composites – Kinetics by Plasma and Halogen Lamps

A series of commercial dental composites curable by visible light have been investigated and compared in terms of their photoreactivity thanks to the photocalorimetry technique by using two different types of lamps, a conventional lamp (halogen lamp) from ESPE and a plasma lamp, Apollo 98E manufactured by DMDS. In terms of kinetics, dental composites cure in just a few seconds with plasma lamp compared to 20-40 s with halogen lamp allowing dentists to save time.

Joint Reuse of Post-consumer Polyolefines and Ground Tire Rubber for Thermoplastic Elastomers Production. Mechanical Performance, Thermal and Radiation Stability

The effect of the irradiation (-rays or electron beam) on structure-property relationships for the high performance thermoplastic elastomers (TPEs) obtained as a result of dynamic vulcanization of the blends of recycled high-density polyethylene (HDPE), ethylene/propylene/diene monomer (EPDM) rubber, and ground tire rubber (GTR, pre-treated with Bitumen), has been investigated. Bitumen was used as a multifunctional agent providing partial devulcanization of GTR (during GTR pre-treatment) as plasticiser and to improve adhesion between the GTR particles and surrounding thermoplastic matrix.

Hybrid Mineral-Polymeric Composite Materials on the Basis of the Polyaniline and Glauconite-Silica

Polyaniline/glauconite-silica (PАn / Gl-Si) composite were obtained by one-step in situ polymerization of aniline in the presence of microdispersion of natural mineral glauconite-silica. The physico-chemical properties (phase content, thermal stability, conductivity and magnetization) of the produced samples of composites with different ratio of components have been studied.

Structural Conformation of Polytetrafluoroethylene Composite Matrix

Enhancement of physical and mechanical properties and structuring activity of polytetrafluoroethylene as matrix of composites by means of mechanical activation is shown. Operating modes of mechanical activation equipment are defined, in which the service properties of PTFE are maximized. The effect of mechanical activation technology on restructuring and change of morphology and supramolecular structure of PTFE is detected for the first time.

Properties of the Hybrid Glauconite/Polyaniline Composites Synthesized in the Aqueous Citrate Acid Solutions

For the first time the series of the composites of aniline and natural mineral glauconite with different ratio of components has been synthesized by oxidation of aniline by ammonium peroxydisulfate in 0.5 M citrate acid aqueous solutions in the presence of dispersion of mineral filler. X-ray phase analysis confirms the amorphous-crystalline structure of produced composites.