computational complexity

IMPROVEMENT OF CYCLIC CODES EFFECTIVENESS BY COMBINATORIAL OPTIMIZATION METHODS

The methods of improving the cyclic codes efficiency constructed on the basis of combinatorial configurations of the type "ideal ring bundles" (IRB) s by three factors – correction ability, power of coding method and complexity of the decoding procedure are considered. The method is based on the principle of combinatorial optimization, grounded on the algebraic theory of ordered integer sequences with a circular structure, all the numbers, as well as all sums of consecutive numbers exhaust the value sofnatural row numbers.

Information retrieval from data sets of maximal value via analogue neural circuit identification from signal set

Using the analogue neural circuit of maximal value signals from signal set identification is proposed for information retrieval in data sets. The circuit is fast, it has simple structure and can be implemented in a modern hardware. A resolution of the circuit is theoretically infinite and it is not dependent on a value of its parameter. An average time necessary for trajectory convergence of the circuit state variable to a steady state is not dependent on a dimension of input data.

Internet Information Retrieval, Parallel Sorting, and Rank-Order Filtering Based on Dynamical Neural Circuits of Maximal Value Signal Identification Among Discrete-Time Signals

The design of mathematical models and corresponding functional block-diagrams of discrete-time neural networks for Internet information retrieval, parallel sorting, and rankorder filtering is proposed. The networks are based on the discrete-time dynamical K-winnerstake-all (KWTA) neural circuits which can identify the K largest from N input signals, where 1£ < K N is a positive integer. Implementation prospects of the networks in an up-to date digital hardware are outlined.

Rank-order filtering based on analogue k-winners-take-all neural circuit

The problem of rank-order filtering is solved on the base of analogue neural circuit which determines maximal value signals among signal set. The filter is described by system of algebra-differential equations and combines such properties as high accuracy and speed, low computational and hardware implementation complexity, and independency on initial conditions. The filter can be used for processing of constant signals, variable signals, and also equal signals. The filter simulation examples confirming theoretical statements are provided.