DYNAMICS OF CARBON DIOXIDE ADSORPTION BY CARBON NANOTUBES

EP.
2023;
: сс. 101-107
1
Національний університет “Львівська політехніка”
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University,
4
Lviv National University of Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyi
5
Jan Dlugosz University in Czestochowa

This article is devoted to the study of the carbon dioxide adsorption process. The relevance of using carbon nanotubes for adsorbing carbon dioxide from industrial emissions is that carbon nanotubes have a high surface area and can effectively interact with carbon dioxide molecules. In addition, they have high mechanical strength and chemical resistance, which makes them attractive for industrial use. Carbon nanotubes have the potential to reduce carbon dioxide emissions and reduce the negative impact on the environment. Using carbon nanotubes in the industry can help reduce greenhouse gas emissions and the environmental impact of burning fossil fuels. Purpose. The work aimed to study the prospects of using carbon nanomaterials to purify industrial emissions from carbon dioxide in a fluidized state. The scientific novelty of the topic "Dynamics of carbon dioxide adsorption by carbon nanotubes" is the study of the influence of temperature and gas velocity on the initial curves of CO2 adsorption dynamics in the fluidized state. 

1. Abd, A.A., Naji , S.Z., Hashim, A.S., & Othman, M.R. (2020). Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: a review. Journal of Environmental Chemical Engineering, 8(5), 104142. doi: https://doi.org/10.1016/j.jece .2020.104142

https://doi.org/10.1016/j.jece.2020.104142

2. Arista, P.C. (2023). Peranan Microorganisms Pendegradasi Plastik: Tinjauan Biodegradation Plastik, Mekanismenya, serta Microorganisms yang Berperan. Journal Pro-Life, 10(1), 743-755. doi: https://doi.org/10.33541/jpvol6Iss2pp102

https://doi.org/10.33541/jpvol6Iss2pp102

3. Cinke, M., Li, J., Bauschlicher Jr., CW, Ricca, A., & Meyyappan, M. (2003). CO2 adsorption in single-walled carbon nanotubes. Chemical physics letters, 376(5-6), 761-766. doi: https://doi.org/10.1016/S0009-2614(03)01124-2

https://doi.org/10.1016/S0009-2614(03)01124-2

4. Gautam, A., & Mondal, M.K. (2023). Review of recent trends and various techniques for CO2 capture: Special emphasis he biphasic amine solvents. Fuel, 334, 126616. doi: https://doi.org/10.1016/j.jclepro.2023.136568

https://doi.org/10.1016/j.jclepro.2023.136568

5. Quan, C., Zhou, Y., Wang, J., Wu, C., & Gao, N. (2023). Biomass-based carbon materials for CO2 capture: A review. Journal of CO2 Utilization, 68, 102373. doi: https://doi.org/10.1016/j.jcou.2022.102373

https://doi.org/10.1016/j.jcou.2022.102373

6. Hayawin, Z.N., Syirat, Z.B., Ibrahim, M.F., Faizah, J.N., Astimar, A.A., Noorshamsiana, A.Wю, & Abd-Aziz, S. (2023). Pollutants removal from palm oil mill effluent (POME) final discharge using oil palm kernel shell activated carbon in the up-flow continuous adsorption system. International Journal of Environmental Science and Technology, 20(4), 4325-4338. doi: https://doi.org/10.1007/s13762-022-04268-8

https://doi.org/10.1007/s13762-022-04268-8

7. Hyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019). Statics and kinetics of albumin adsorption by natural zeolite. Chemistry & Chemical Technology, 1(13), 95-100. doi: https://doi.org/10.23939/chcht13.01.095

https://doi.org/10.23939/chcht13.01.095

8. Li, J.Y., Lin, Y.T., Wang, D.K., Tseng, H.H., & Wey, M.Y. (2023). The planetary cross-linked structure design of hybrid organosilica membrane by amine-driven polymerization for CO2 separation. Journal of Cleaner Production, 398, 136568. doi: https://doi.org/10.1016/j.jclepro.2023.136568

https://doi.org/10.1016/j.jclepro.2023.136568

9. Park, D., Hong, S.H., Kim, K.M., & Lee, C.H. (2020). Adsorption equilibria and kinetics of silica gel for N2O, O2, N2, and CO2. Separation and Purification Technology, 251, 117326. doi: https://doi.org/10.1016/j.seppur.2020.117326

https://doi.org/10.1016/j.seppur.2020.117326

10. Peng, X., Vicent-Luna, J.M., & Jin, Q. (2021). Water–gas shift reaction that capture carbon dioxide and separately hydrogen he single-walled carbon nanotubes. ACS Applied Materials & Interfaces, 13(9), 11026-11038. doi: https://doi.org/10.1021/acsami.1c00145

https://doi.org/10.1021/acsami.1c00145

11. Wang, L., Rinklebe, J., Tack, F.M., & Hou, D. (2021). A review of green remediation strategies for heavy metal contaminated soil. Soil Use and Management, 37(4), 936-963. doi: https://doi.org/10.1111/sum.12717

https://doi.org/10.1111/sum.12717

12. Wang, F., Gu, Y., Zha, J., & Wei, S. (2023). Synthesis of Graphene Quantum Dots Enhanced Nano Ca(OH)2 from Ammoniated CaCl2. Materials, 16(4), 1568. doi: https://doi.org/10.3390/ma16041568

https://doi.org/10.3390/ma16041568

13. Wijaya, D.T., & Lee, C.W. (2022). Metal-Organic framework catalysts: A versatile platform for bioinspired electrochemical conversion of carbon dioxide. Chemical Engineering Journal, 137311. doi: https://doi.org/10.1016/j.cej.2022.137311

https://doi.org/10.1016/j.cej.2022.137311

14. Yuan, J., Liu, X., Wang, H., & Li, X. (2023). Evaluation and screening of porous materials containing fluorine for carbon dioxide capture and separation. Computational Materials Science, 216, 111872. doi: https://doi.org/10.1016/j.commatsci.2022.111872

https://doi.org/10.1016/j.commatsci.2022.111872