Синтез та властивості фосфоровмісних псевдополіамінокислот поліестерного типу на основі n-похідних глутамінової кислоти

2022;
: cc. 51–58
1
Національний університет “Львівська політехніка”
2
Національний університет “Львівська політехніка”
3
Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies
4
Національний університет “Львівська політехніка”
5
Інститут біології тварин НААН
6
Lviv Polytechnic National University
7
Національний університет “Львівська політехніка”

Поліфосфоестери (ПФЕ) – це клас полімерів, що володіють високою хімічною функціональністю та здатністю до біологічного розкладання. Синтезовані нові поліфосфоестери на основі глутамінової кислоти за реакцією Стегліха. Розробленийсинтетичнийпідхіддозволяєконтролювати склад і структуру ПФЕ, а отже, їхфізичні та колоїдні властивості. Дослідження солюбілізації та цитотоксичностіinvitro довели потенціал застосування ПФЕ для доставки лікарських препаратів.

  1. Brannigan, R.P.; Dove, A.P. Synthesis, Properties and Biomedical Applications of Hydrolytically Degradable Materials Based on Aliphatic Polyesters and Polycarbonates. Biomater. Sci.2017,5, 9-21. https://doi.org/10.1039/c6bm00584e
  2. Urbánek, T.; Jäger. E.; Jäger, A.; Hrubý, M. Selectively Biodegradable Polyesters: Nature-Inspired Construction Materials for Future Biomedical Applications. Polymers2019,11, 1061. https://doi.org/10.3390/polym11061061
  3. Brzozowski, Z.K.; Szymańska, E.; Bratychak, M.M. New Epoxy-Unsaturated Polyester Resin Copolymers. React. Funct. Polym. 1999,33, 217-224. https://doi.org/10.1016/s1381-5148(97)00045-x
  4. Manavitehrani, I.; Fathi, A.; Badr, H.; Daly, S.; Shirazi, A.N.; Dehghani, F. Biomedical Applications of Biodegradable Polyesters. Polymers2016,8, 20.https://doi.org/10.3390/polym8010020
  5. Varvarenko, S.; Tarnavchyk, I.; Voronov, A.; Fihurka, N.; Dron, I.; Nosova, N.; Taras, R.; Samaryk, V.; Voronov, S. Synthesis and Colloidal Properties of Polyesters Based on Glutamic Acids and Glycols of Different Nature. Chem. Chem. Technol. 2013,7, 161-168. https://doi.org/10.23939/chcht07.02.161
  6. Bashta, B.; Bruzdziak, P.; Astakhova, O.; Shyshchak, O.; Bratychak, M. Synthesis and Properties of Carboxy-Containing Peroxy Oligomer. Chem. Chem. Technol.2013,7, 413-421. https://doi.org/10.23939/chcht07.04.413
  7. Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Introduction-Biomaterials Science: AnEvolving, Multidisciplinary Endeavor. In Biomaterials Science, 3rd ed.; Lemons, B.D., Ratner, A.S., Hoffman, F.J., Schoen, J.E., Eds.; Academic Press: Boston, MA, USA, 2013; pp 25-39. https://doi.org/10.1016/B978-0-08-087780-8.00153-4
  8. Diaz, A.; Katsarava, R.; Puiggali, J. Synthesis, Properties and Applications of Biodegradable Polymers Derived From Diols and Dicarboxylic Acids: From Polyesters to Poly(Ester Amide)s. Int. J Mol. Sci. 2014, 15, 7064-7123.https://doi.org/10.3390/ijms15057064
  9. Yakoviv, M.; Fihurka, N.; Nosova, N.; Samaryk, V.; Vasylyshyn, T.; Hermanovych, S.; Voronov, S.; Varvarenko, S. Researches of Amphiphilic Properties of Copolyesterswith Chromophore Groups. Chem. Chem. Technol. 2018,12, 318-325. https://doi.org/10.23939/chcht12.03.318
  10. Bratychak, M.; Bratychak, M.; Brostow, W.; Shyshchak, O. Synthesis and Properties of Peroxy Derivatives of Epoxy Resins Based on Bisphenol A: Effects of the Presence of Boron Trifluoride Ethereate. Mater. Res. Innov. 2002,6,24-30. https://doi.org/10.1007/s10019-002-0157-7
  11. Da Costa, R.C.; Pereira, E.D.; Silva, F.M.; De Jesus, E.O.; SouzaJr., F.G. Drug Micro-Carriers Based on Polymers and Their Sterilization. Chem. Chem. Technol. 2018, 12, 473-487. https://doi.org/10.23939/chcht12.04.473
  12. Ivashkiv, O.; Namiesnik, J.; Shyshchak, O.; Polyuzhyn, I.; Bratychak, M. Synthesis and Properties of Oligomers with Hydroxy End-Groups. Chem. Chem. Technol.2016,10, 587-594. https://doi.org/10.23939/chcht10.04si.587
  13. Ivanchenko, O.; Authesserre, U.; Coste, G.; Mazières, S.; Destarac, M.; Harrisson, S. ϵ-Thionocaprolactone: An Accessible Monomer for Preparation of Degradable Poly(Vinyl Esters) by Radical Ring-Opening Polymerization. Polym. Chem.2021,12, 1931-1938. https://doi.org/10.1039/D1PY00080B
  14. Wang, Y.-C.; Yuan, Y.-Y.; Du, J.-Z.; Yang, X.-Z.; Wang, J. Recent Progress in Polyphosphoesters: From Controlled Synthesis to Biomedical Applications. Macromol. Biosci.2009,9, 1154-1164. https://doi.org/10.1002/mabi.200900253
  15. Buls, V.W.; Creek, W.; Morris, R.C. Polyesters of Phosphoryl-Substitute Alcohols and Polybasic Phosphorus Acids. U.S.Patent 2807636, September 24,1957.
  16. Yang, X.-Z.; Sun, T.-M.; Dou, S.; Wu, J.; Wang, Y.-C.; Wang, J. Block Copolymer of Polyphosphoester and Poly(l-Lactic Acid) Modified Surface for Enhancing Osteoblast Adhesion, Proliferation, and Function. Biomacromolecules2009,10, 2213-2220. https://doi.org/10.1021/bm900390k
  17. Strasser, P.; Teasdale, I. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules2020, 25, 1716. https://doi.org/10.3390/molecules25071716
  18. Vanslambrouck, S.; Riva, R.; Ucakar, B.; Préat, V.; Gagliardi, M.; Molin, D.G.M.; Lecomte, P.; Jérôme, C. Thiol-ene Reaction: An Efficient Toolto Design Lipophilic Polyphosphoesters for Drug Delivery Systems. Molecules2021, 26, 1750. https://doi.org/10.3390/molecules26061750
  19. Bauer, K.N.; Tee, H.T.;Velencoso, M.M.;Wurm, F.R. Main-Chain Poly(Phosphoester)s: History, Syntheses, Degradation, Bio- and Flame-Retardant Applications. Prog. Polym. Sci. 2017,73, 61-122. https://doi.org/10.1016/j.progpolymsci.2017.05.004
  20. Steinbach, T.; Wurm, F.R. Poly(Phosphoester)s: a New Platform For Degradable Polymers. Angew. Chem. Int. Ed. 2015, 54, 6098-6108. https://doi.org/10.1002/anie.201500147
  21. Schöttler, S.; Becker, G.;Winzen, S.;Steinbach, T.;Mohr, K.;Landfester, K.;Mailänder, V.;Wurm, F.R. Protein Adsorption is Required for Stealth Effect of Poly(Ethylene Glycol)- and Poly(Phosphoester)-Coated Nanocarriers. Nat. Nanotechnol. 2016,11, 372-377. https://doi.org/10.1038/nnano.2015.330
  22. Pelosi, C.; Tinè, M. R.; Wurm, F.R. Main-Chain Water-Soluble Polyphosphoesters: Multi-Functional Polymers as Degradable PEG-Alternatives for Biomedical Applications. Eur. Polym. J. 2020, 141, 110079.https://doi.org/10.1016/j.eurpolymj.2020.110079
  23. Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Design, Functionalization Strategies and Biomedical Applications of Targeted Biodegradable/Biocompatible Polymer-Based Nanocarriers for Drug Delivery. Chem. Soc. Rev.2013, 42, 1147-235. https://doi.org/10.1039/C2CS35265F
  24. Gordillo-Galeano, A.; Ponce, A.; Mora-Huertas, C.E. Surface Structural Characteristics of Some Colloidal Lipid Systems Used in Pharmaceutics. J. Drug Deliv. Sci. Technol.2021, 62, 02345. https://doi.org/10.1016/j.jddst.2021.102345
  25. Idrees, H.; Zaidi, S.Z.J.; Sabir, A.; Khan, R.U.; Zhang, X.; Hassan, S-U. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications. Nanomaterials2020, 10, 1970. https://doi.org/10.3390/nano10101970
  26. Atanase, L.I. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers2021, 13, 477. https://doi.org/10.3390/polym13030477
  27. Varvarenko, S.M.; Ferens, M.V.; Samaryk, V.Y.; Nosova, N.G.; Fihurka, N.V.; Ostapiv, D.D.; Voronov, S.A. Synthesis of Copolyestersof Fluorescein and 2-(Dodecanamino) Pentanedionic Acid via Steglich Reaction. VoprosyKhimiiiKhimicheskoiTekhnologii2018,2, 5-15.
  28. Kuznetsova, K.I.; Vostres, V.B.; Fleychuk, R.I.; Hevus, O.I. Synthesis of Surface-Active Monomers and Peroxides on the Basis of Disubstituted Oxetane. VoprosyKhimiiiKhimicheskoiTekhnol.2019,2, 5-11. https://doi.org/10.32434/0321-4095-2019-123-2-5-11
  29. Nagornyak, M.; Fihurka, N.; Samaryk, V.; Varvarenko, S.; Ferens, M.; Oleksa, V. Modification of Polysaccharides By N-Derivatives of Glutamic Acid Using Steglich Reaction. Chem. Chem. Technol.2016, 10, 423-427. https://doi.org/10.23939/chcht10.04.423
  30. Zubyk, H.; Plonska-Brzezinska, M.; Shyshchak, O.; Astakhova, O.; Bratychak, M. Study of Phenol-Formaldehyde Oligomers Derivatives Structure by IR- and NMR-Spectroscopy. Chem. Chem. Technol. 2015, 9, 435-444. https://doi.org/10.23939/chcht09.04.435
  31. Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol., 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
  32. Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. MonomethacrylateDerivative of Ed-24 Epoxy Resin and Its Application. Chem. Chem. Technol., 2015, 7(1), 73-77. https://doi.org/10.23939/chcht07.01.073
  33. Demchuk, Z.; Savka, M.; Voronov, A.; Budishevska, O.; Donchak, V.; Voronov, S. Amphiphilic Cholesterol Containing Polymers for Drug Delivery Systems. Chem. Chem. Technol. 2016, 10, 561-570. https://doi.org/10.23939/chcht10.04si.561
  34. Matysik, S. I.; Kuzminov, B. P.;Ostapiv, D. D. Cytotoxic Action of Hepatoprotector Antral on Bull Sperm. Gig. Sanit.2020, 99, 206-209. https://doi.org/10.33029/0016-9900-2020-99-2-206-209
  35. Chekh, B.O.; Ferens, M.V.; Ostapiv, D.D.; Samaryk, V.Y.; Varvarenko, S.M.; Vlizlo, V.V. Characteristics of Novel Polymer Based on Pseudo-Polyamino Acids Glula-DPG-PEG600: Binding of Albumin, Biocompatibility, Biodistribution and Potential Crossing the Blood-Brain Barrier in Rats. Ukr. Biochem. J.2017, 89, 13-21. https://doi.org/10.15407/ubj89.04.013
  36. Fihurka, N.; Tarnavchyk, I.; Samaryk, V.; Varvarenko, S.; Nosova, N.; Voronov, A.; Nagornyak, M.; Ferens, M.; Voronov, S.A. Study of an Irreversible Condensation of Glutamic Acid and Polyoxyethylene/Polyoxypropylene Diols Using Thionyl Chloride. Org. Prep. Proc. Int. 2018, 50, 502-508.https://doi.org/10.1080/00304948.2018.1525674